scholarly journals The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1.

1991 ◽  
Vol 174 (6) ◽  
pp. 1461-1466 ◽  
Author(s):  
E L Berg ◽  
T Yoshino ◽  
L S Rott ◽  
M K Robinson ◽  
R A Warnock ◽  
...  

A skin-associated population of memory T lymphocytes, defined by expression of the cutaneous lymphocyte antigen (CLA), binds selectively and avidly to the vascular lectin endothelial cell-leukocyte adhesion molecule 1 (ELAM-1), an interaction that may be involved in targeting of CLA+ T cells to cutaneous sites of chronic inflammation. Here we present evidence that CLA itself is the (or a) lymphocyte homing receptor for ELAM-1. Antigen isolated with anti-CLA monoclonal antibody HECA-452 from human tonsillar lysates avidly binds ELAM-1 transfected mouse cells. Anti-CLA antibody blocks T lymphocyte binding to ELAM-1 transfectants. HECA-452 and ELAM-1 binding to lymphocytes or to isolated tonsillar HECA-452 antigen is abrogated by neuraminidase treatment implying a prominent role for sialic acid in CLA structure and function. The dominant form of CLA on T cells is immunologically distinct from the major neutrophil ELAM-1 ligand, the sialyl Lewis x (sLex) antigen (NeuAc alpha 2-3Gal beta 1-4[Fuc alpha 1-3]GlcNAc), which is absent, weakly expressed, or masked on T cells. However, neuraminidase treatment of CLA+ T cells, but not of CLA- T cells, reveals Lewis x (CD15) structures. In combination with the known requirement for terminal NeuAc alpha 2-3Gal and fucose residues attached to N-acetylglucosamine for ELAM-1 and HECA-452 binding, this finding suggests that CLA may comprise an additionally sialylated or otherwise modified form of sLex. The identification of a lymphocyte homing receptor for skin may permit novel approaches to the diagnosis and therapy of cutaneous and inflammatory disorders.

Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4104-4112 ◽  
Author(s):  
Jean-Marc Gauguet ◽  
Steven D. Rosen ◽  
Jamey D. Marth ◽  
Ulrich H. von Andrian

Abstract Blood-borne lymphocyte trafficking to peripheral lymph nodes (PLNs) depends on the successful initiation of rolling interactions mediated by L-selectin binding to sialomucin ligands in high endothelial venules (HEVs). Biochemical analysis of purified L-selectin ligands has identified posttranslational modifications mediated by Core2GlcNAcT-I and high endothelial cell GlcNAc-6-sulfotransferase (HECGlcNAc6ST). Consequently, lymphocyte migration to PLNs of C2GlcNAcT-I-/- and HEC-GlcNAc6ST-/- mice was reduced; however, B-cell homing was more severely compromised than T-cell migration. Accordingly, intravital microscopy (IVM) of PLN HEVs revealed a defect in B-cell tethering and increased rolling velocity (Vroll) in C2GlcNAcT-I-/- mice that was more pronounced than it was for T cells. By contrast, B- and T-cell tethering was normal in HEC-GlcNAc6ST-/- HEVs, but Vroll was accelerated, especially for B cells. The increased sensitivity of B cells to glycan deficiencies was caused by lower expression levels of L-selectin; L-selectin+/- T cells expressing L-selectin levels equivalent to those of B cells exhibited intravascular behavior similar to that of B cells. These results demonstrate distinct functions for C2GlcNAcT-I and HEC-GlcNAc6ST in the differential elaboration of HEV glycoproteins that set a threshold for the amount of L-selectin needed for lymphocyte homing. (Blood. 2004;104:4104-4112)


Sign in / Sign up

Export Citation Format

Share Document