scholarly journals Autoimmune diabetes can be induced in transgenic major histocompatibility complex class II-deficient mice.

1993 ◽  
Vol 178 (2) ◽  
pp. 589-596 ◽  
Author(s):  
T M Laufer ◽  
M G von Herrath ◽  
M J Grusby ◽  
M B Oldstone ◽  
L H Glimcher

Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease marked by hyperglycemia and mononuclear cell infiltration of insulin-producing beta islet cells. Predisposition to IDDM in humans has been linked to the class II major histocompatibility complex (MHC), and islet cells often become aberrantly class II positive during the course of the disease. We have used two recently described transgenic lines to investigate the role of class II molecules and CD4+ T cells in the onset of autoimmune insulitis. Mice that are class II deficient secondary to a targeted disruption of the A beta b gene were bred to mice carrying a transgene for the lymphocytic choriomenigitis virus (LCMV) glycoprotein (GP) targeted to the endocrine pancreas. Our results indicate that class II-deficient animals with and without the GP transgene produce a normal cytotoxic T lymphocyte response to whole LCMV. After infection with LCMV, GP-transgenic class II-deficient animals develop hyperglycemia as rapidly as their class II-positive littermates. Histologic examination of tissue sections from GP-transgenic class II-deficient animals reveals lymphocytic infiltrates of the pancreatic islets that are distinguishable from those of their class II-positive littermates only by the absence of infiltrating CD4+ T cells. These results suggest that in this model of autoimmune diabetes, CD4+ T cells and MHC class II molecules are not required for the development of disease.

1997 ◽  
Vol 186 (8) ◽  
pp. 1223-1232 ◽  
Author(s):  
Thomas Brocker

Thymic T cell development is controlled by T cell receptor (TCR)–major histocompatibility complex (MHC) interactions, whereas a further dependence of peripheral mature T cells on TCR–MHC contact has not been described so far. To study this question, CD4 T cell survival was surveyed in mice lacking MHC class II expression and in mice expressing MHC class II exclusively on dendritic cells. Since neither of these mice positively select CD4 T cells in the thymus, they were grafted with MHC class II–positive embryonic thymic tissue, which had been depleted of bone marrow derived cells. Although the thymus grafts in both hosts were repopulated with host origin thymocytes of identical phenotype and numbers, an accumulation of CD4+ T cells in peripheral lymphoid organs could only be observed in mice expressing MHC class II on dendritic cells, but not in mice that were completely MHC class II deficient. As assessed by histology, the accumulating peripheral CD4 T cells were found to be in close contact with MHC class II+ dendritic cells, suggesting that CD4 T cells need peripheral MHC class II expression for survival and that class II+ dendritic cells might play an important role for the longevity of CD4 T cells.


1992 ◽  
Vol 176 (1) ◽  
pp. 275-280 ◽  
Author(s):  
M A Blackman ◽  
F E Lund ◽  
S Surman ◽  
R B Corley ◽  
D L Woodland

It has been established that at least some V beta 17+ T cells interact with an endogenous superantigen encoded by the murine retrovirus, Mtv-9. To analyze the role of major histocompatibility complex (MHC) class II molecules in presenting the Mtv-9 encoded superantigen, vSAG-9 to V beta 17+ hybridomas, a panel of nine hybridomas was tested for their ability to respond to A20/2J (H-2d) and LBK (H-2a) cells which had been transfected with the vSAG-9 gene. Whereas some of the hybridomas recognized vSAG-9 exclusively in the context of H-2a, other hybridomas recognized vSAG-9 exclusively in the context of H-2d or in the context of both H-2d and H-2a. These results suggest that: (a) the class II MHC molecule plays a direct role in the recognition of retroviral superantigen by T cells, rather than serving simply as a platform for presentation; and, (b) it is likely that components of the TCR other than V beta are involved in the vSAG-9/TCR/class II interaction.


1996 ◽  
Vol 184 (5) ◽  
pp. 1747-1753 ◽  
Author(s):  
J F Katz ◽  
C Stebbins ◽  
E Appella ◽  
A J Sant

We have studied the consequences of invariant chain (Ii) and DM expression on major histocompatibility complex (MHC) class II function. Ii has a number of discrete functions in the biology of class II, including competitive blocking of peptide binding in the endoplasmic reticulum and enhancing localization in the endocytic compartments. DM is thought to act primarily in endosomes to promote dissociation of the Ii-derived (CLIP) peptide from the class II antigen-binding pocket and subsequent peptide loading. In this study, we have evaluated the functional role of Ii and DM by examining their impact on surface expression of epitopes recognized by a large panel of alloreactive T cells. We find most epitopes studied are influenced by both Ii and DM. Most strikingly, we find that surface expression of a significant fraction of peptide-class II complexes is extinguished, rather than enhanced, by DM expression within the APC. The epitopes antagonized by DM do not appear to be specific for CLIP. Finally, we found that DM was also able to extinguish recognition of a defined peptide derived from the internally synthesized H-2Ld protein. Thus, rather than primarily serving in the removal of CLIP, DM may have a more generalized function of editing the array of peptides that are presented by class II. This editing can be either positive or negative, suggesting that DM plays a specifying role in the display of peptides presented to CD4 T cells.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e87519 ◽  
Author(s):  
Chandirasegaran Massilamany ◽  
Arunakumar Gangaplara ◽  
Ting Jia ◽  
Christian Elowsky ◽  
Guobin Kang ◽  
...  

1994 ◽  
Vol 180 (6) ◽  
pp. 2419-2424 ◽  
Author(s):  
I Kariv ◽  
R R Hardy ◽  
K Hayakawa

We previously demonstrated selective enrichment of major histocompatibility complex (MHC) class II-specific autoreactive T cells in a subset of mouse CD4+ thymocytes. Here we show that a significant fraction of these autoreactive cells in the normal adult thymus expresses NK1.1 and high levels of Ly-6C and also exhibits flexibility in MHC restriction. In normal mice, this NK1.1+Ly-6Chi subfraction accounts for 10-50% of the CD4+ autoreactive subset and is enriched for MHC class II-restricted autoreactive cells as determined by mixed leukocyte reaction frequency analysis, similar to NK1.1-Ly-6C-CD4+ autoreactive cells. In contrast, in the thymus of class II-deficient littermate mice, NK1.1+Ly-6Chi cells account for most of the mature heat stable antigen (HSA)-CD4+ fraction and exhibit MHC-restricted non-class II autoreactivity. Thus, NK1.1+Ly-6ChiCD4+ T cells show flexibility in MHC class restriction, but their autoreactivity remains MHC dependent.


1994 ◽  
Vol 179 (3) ◽  
pp. 1029-1034 ◽  
Author(s):  
J Thibodeau ◽  
N Labrecque ◽  
F Denis ◽  
B T Huber ◽  
R P Sékaly

Bacterial and retroviral superantigens (SAGs) interact with major histocompatibility complex (MHC) class II molecules and stimulate T cells upon binding to the V beta portion of the T cell receptor. Whereas both types of molecules exert similar effects on T cells, they have very different primary structures. Amino acids critical for the binding of bacterial toxins to class II molecules have been identified but little is known of the molecular interactions between class II and retroviral SAGs. To determine whether both types of superantigens interact with the same regions of MHC class II molecules, we have generated mutant HLA-DR molecules which have lost the capacity to bind three bacterial toxins (Staphylococcus aureus enterotoxin A [SEA], S. aureus enterotoxin B [SEB], and toxic shock syndrome toxin 1 [TSST-1]). Cells expressing these mutated class II molecules efficiently presented two retroviral SAGs (Mtv-9 and Mtv-7) to T cells while they were unable to present the bacterial SAGs. These results demonstrate that the binding sites for both types of SAGs can be dissociated.


1998 ◽  
Vol 187 (11) ◽  
pp. 1871-1883 ◽  
Author(s):  
Laurent Gapin ◽  
Yoshinori Fukui ◽  
Jean Kanellopoulos ◽  
Tetsuro Sano ◽  
Armanda Casrouge ◽  
...  

The positive selection of CD4+ T cells requires the expression of major histocompatibility complex (MHC) class II molecules in the thymus, but the role of self-peptides complexed to class II molecules is still a matter of debate. Recently, it was observed that transgenic mice expressing a single peptide–MHC class II complex positively select significant numbers of diverse CD4+ T cells in the thymus. However, the number of selected T cell specificities has not been evaluated so far. Here, we have sequenced 700 junctional complementarity determining regions 3 (CDR3) from T cell receptors (TCRs) carrying Vβ11-Jβ1.1 or Vβ12-Jβ1.1 rearrangements. We found that a single peptide–MHC class II complex positively selects at least 105 different Vβ rearrangements. Our data yield a first evaluation of the size of the T cell repertoire. In addition, they provide evidence that the single Eα52-68–I-Ab complex skews the amino acid frequency in the TCR CDR3 loop of positively selected T cells. A detailed analysis of CDR3 sequences indicates that a fraction of the β chain repertoire bears the imprint of the selecting self-peptide.


Sign in / Sign up

Export Citation Format

Share Document