scholarly journals H-2M3a violates the paradigm for major histocompatibility complex class I peptide binding.

1995 ◽  
Vol 181 (5) ◽  
pp. 1817-1825 ◽  
Author(s):  
J M Vyas ◽  
J R Rodgers ◽  
R R Rich

The major histocompatibility (MHC) class I-b molecule H-2M3a binds and presents N-formylated peptides to cytotoxic T lymphocytes. This requirement potentially places severe constraints on the number of peptides that M3a can present to the immune system. Consistent with this idea, the M3a-Ld MHC class I chimera is expressed at very low levels on the cell surface, but can be induced significantly by the addition of specific peptides at 27 degrees C. Using this assay, we show that M3a binds many very short N-formyl peptides, including N-formyl chemotactic peptides and canonical octapeptides. This observation is in sharp contrast to the paradigmatic size range of peptides of 8-10 amino acids binding to most class I-a molecules and the class I-b molecule Qa-2. Stabilization by fMLF-benzyl amide could be detected at peptide concentrations as low as 100 nM. While N-formyl peptides as short as two amino acids in length stabilized expression of M3a-Ld, increasing the length of these peptides added to the stability of peptide-MHC complexes as determined by 27-37 degrees C temperature shift experiments. We propose that relaxation of the length rule may represent a compensatory adaptation to maximize the number of peptides that can be presented by H-2M3a.


1996 ◽  
Vol 183 (4) ◽  
pp. 1545-1552 ◽  
Author(s):  
B Yang ◽  
Y S Hahn ◽  
C S Hahn ◽  
T J Braciale

Accumulating evidence has implicated the proteasome in the processing of protein along the major histocompatibility complex (MHC) class I presentation pathway. The availability of potent proteasome inhibitors provides an opportunity to examine the role of proteasome function in antigen presentation by MHC class I molecules to CD8+ cytotoxic T lymphocytes (CTLs). We have investigated the processing and presenting of antigenic epitopes from influenza hemagglutinin in target cells treated with the inhibitor of proteasome activity MG132. In the absence of proteasome activity, the processing and presentation of the full-length hemagglutinin was abolished, suggesting the requirement for proteasome function in the processing and presentation of the hemagglutinin glycoprotein. Epitope-containing translation products as short as 21 amino acids when expressed in target cells required proteasome activity for processing and presentation of the hemagglutin epitope to CTLs. However, when endogenous peptides of 17 amino acids or shorter were expressed in target cells, the processing and presentation of epitopes contained in these peptides were insensitive to the proteasome inhibitor. Our results support the hypothesis that proteasome activity is required for the generation of peptides presented by MHC class I molecules and that the requirement for proteasome activity is dependent on the size of the translation product expressed in the target cell. The implications of these findings are discussed.



1994 ◽  
Vol 179 (5) ◽  
pp. 1613-1623 ◽  
Author(s):  
F Momburg ◽  
J Roelse ◽  
G J Hämmerling ◽  
J J Neefjes

The major histocompatibility complex (MHC)-encoded heterodimeric TAP1/TAP2 transporter (TAP) translocates cytosolic peptides into the lumen of the endoplasmic reticulum (ER), where peptides of 8 to 11 amino acids long associate with MHC class I molecules. We have studied the selectivity of peptide translocation by TAP in streptolysin O-permeabilized cells using glycosylatable, radioiodinated model peptides to detect import into the ER lumen. TAP-dependent translocation of a radiolabeled nonamer peptide was most efficiently inhibited by unlabeled 9- to 11-mer peptides. Peptides between 7 and 40 amino acids long all could inhibit transport, the longer peptides being least effective. Also, peptides shorter than eight amino acids were inefficiently translocated. The use of directly labeled length variants in translocation assays and TLC analysis of the transported material revealed two pathways for translocation: short peptides (7 to 13 amino acids long) were translocated without prior modification. In contrast, transport of longer peptides was not effective. Instead such peptides were clipped by cytosolic peptidases before efficient transport. Our data suggest that TAP preferentially translocates peptides of appropriate length for class I binding. Furthermore, TAP-translocated peptides were rapidly released from the ER unless they were trapped there by being glycosylated or by binding to MHC class I molecules.



2015 ◽  
Vol 167 (3-4) ◽  
pp. 166-170
Author(s):  
Larissa Sarmento dos Santos ◽  
Juliana Pinto da Silva Mol ◽  
Auricélio Alves de Macedo ◽  
Ana Patrícia Carvalho Silva ◽  
Diego Luiz dos Santos Ribeiro ◽  
...  


1997 ◽  
Vol 8 (1) ◽  
pp. 47-57 ◽  
Author(s):  
E Stang ◽  
J Kartenbeck ◽  
R G Parton

Simian virus 40 (SV40) has been shown to enter mammalian cells via uncoated plasma membrane invaginations. Viral particles subsequently appear within the endoplasmic reticulum. In the present study, we have examined the surface binding and internalization of SV40 by immunoelectron microscopy. We show that SV40 associates with surface pits which have the characteristics of caveolae and are labeled with antibodies to the caveolar marker protein, caveolin-1. SV40 is believed to use major histocompatibility complex (MHC) class I molecules as cell surface receptors. Using a number of MHC class I-specific monoclonal antibodies, we found that both viral infection and association of virus with caveolae were strongly reduced by preincubation with anti-MHC class I antibodies. Because binding of SV40 to MHC class I molecules may induce clustering, we investigated whether antibody cross-linked class I molecules also redistributed to caveolae. Clusters of MHC class I molecules were indeed shown to be specifically associated with caveolin-labeled surface pits. Taken together, the results suggest that SV40 may make use of MHC class I molecule clustering and the caveolae pathway to enter mammalian cells.





1993 ◽  
Vol 13 (3) ◽  
pp. 1554-1564
Author(s):  
A G Frauman ◽  
P Chu ◽  
L C Harrison

The overexpression of major histocompatibility complex (MHC) class I molecules in endocrine epithelial cells is an early feature of autoimmune thyroid disease and insulin-dependent diabetes mellitus, which may reflect a cellular response, e.g., to viruses or toxins. Evidence from a transgenic model in pancreatic beta cells suggests that MHC class I overexpression could play an independent role in endocrine cell destruction. We demonstrate in this study that the transgenic overexpression of an allogeneic MHC class I protein (H-2Kb) linked to the rat thyroglobulin promoter, in H-2Kk mice homozygous for the transgene, leads to thyrocyte atrophy, hypothyroidism, growth retardation, and death. Thyrocyte atrophy occurred in the absence of lymphocytic infiltration. Tolerance to allogeneic class I was revealed by the reduced ability of primed lymphocytes from transgenic mice to lyse H-2Kb target cells in vitro. This nonimmune form of thyrocyte destruction and hypothyroidism recapitulates the beta-cell destruction and diabetes that results from transgenic overexpression of MHC class I molecules in pancreatic beta cells. Thus, we conclude that overexpression of MHC class I molecules may be a general mechanism that directly impairs endocrine epithelial cell viability.



2011 ◽  
Vol 63 (12) ◽  
pp. 821-834 ◽  
Author(s):  
Lasse Eggers Pedersen ◽  
Mikkel Harndahl ◽  
Michael Rasmussen ◽  
Kasper Lamberth ◽  
William T. Golde ◽  
...  


1997 ◽  
Vol 186 (11) ◽  
pp. 1809-1818 ◽  
Author(s):  
Marco Colonna ◽  
Francisco Navarro ◽  
Teresa Bellón ◽  
Manuel Llano ◽  
Pilar García ◽  
...  

Natural killer (NK) cell–mediated lysis is negatively regulated by killer cell inhibitory receptors specific for major histocompatibility complex (MHC) class I molecules. In this study, we characterize a novel inhibitory MHC class I receptor of the immunoglobulin-superfamily, expressed not only by subsets of NK and T cells, but also by B cells, monocytes, macrophages, and dendritic cells. This receptor, called Ig-like transcript (ILT)2, binds MHC class I molecules and delivers a negative signal that inhibits killing by NK and T cells, as well as Ca2+ mobilization in B cells and myelomonocytic cells triggered through the B cell antigen receptor and human histocompatibility leukocyte antigens (HLA)–DR, respectively. In addition, myelomonocytic cells express receptors homologous to ILT2, which are characterized by extensive polymorphism and might recognize distinct HLA class I molecules. These results suggest that diverse leukocyte lineages have adopted recognition of self–MHC class I molecules as a common strategy to control cellular activation during an immune response.



Sign in / Sign up

Export Citation Format

Share Document