scholarly journals Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes.

1995 ◽  
Vol 181 (5) ◽  
pp. 1923-1927 ◽  
Author(s):  
P Panina-Bordignon ◽  
R Lang ◽  
P M van Endert ◽  
E Benazzi ◽  
A M Felix ◽  
...  

Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that results in the destruction of the pancreatic islet beta cells. Glutamic acid decarboxylase (GAD) has been recently indicated as a key autoantigen in the induction of IDDM in nonobese diabetic mice. In human diabetes, the mechanism by which the beta cells are destroyed is still unknown. Here we report the first evidence for the presence of GAD-specific cytotoxic T cells in asymptomatic and recent diabetic patients. GAD65 peptides displaying the human histocompatibility leukocyte antigen (HLA)-A*0201 binding motif have been synthesized. One of these peptides, GAD114-123, binds to HLA-A*0201 molecules in an HLA assembly assay. Peripheral blood mononuclear cells from individuals with preclinical IDDM, recent-onset IDDM, and from healthy controls were stimulated in vitro with the selected peptide in the presence of autologous antigen-presenting cells. In three cases (one preclinical IDDM and two recent-onset IDDM), we detected specific killing of autologous antigen-presenting cells when incubated with GAD114-123 peptide or when infected with a recombinant vaccinia virus expressing GAD65. These patients were the only three carrying the HLA-A*0201 allele among the subjects studied. Our finding suggests that GAD-specific cytotoxic T lymphocytes may play a critical role in the initial events of IDDM.

1993 ◽  
Vol 177 (2) ◽  
pp. 535-540 ◽  
Author(s):  
M C Honeyman ◽  
D S Cram ◽  
L C Harrison

Glutamic acid decarboxylase (GAD) has been shown to be a target of autoantibodies in insulin-dependent diabetes (IDD). Two forms of GAD, with molecular weights of 67,000 and 65,000, have been cloned from separate genes. As pancreatic islet beta cell destruction DD is an autoimmune process mediated by T cells, we sought to determine if recombinant GAD67 was recognized by T cells in IDD subjects and particularly their first-degree relatives with islet cell antibodies known to be at risk for IDD. The central regions of human islet and brain GAD67 (amino acids 208-404) were cloned as fusion proteins with glutathione-S-transferase (GST). Proliferation of peripheral blood T cells in the presence of recombinant GAD67 was significantly higher in both at-risk relatives and recent-onset IDD subjects than in other autoimmune disease subjects and human histocompatibility leukocyte antigen (HLA)-matched healthy controls. Thus, 12 of 29 (41%) at-risk relatives and 11 of 29 (38%) recent-onset IDD subjects responded to GAD67, compared with 1 of 7 (14%) other autoimmune disease subjects and 1 of 23 (4%) HLA-matched controls. T cell responses to GST alone or to tetanus toxoid were not different between the groups. These findings demonstrate that GAD67 is a target autoantigen of T cells in IDD and suggest the possibility that GAD-reactive T cells may delineate asymptomatic subjects at increased risk for IDD.


Diabetes ◽  
2014 ◽  
Vol 63 (8) ◽  
pp. 2876-2887 ◽  
Author(s):  
S. Robert ◽  
C. Gysemans ◽  
T. Takiishi ◽  
H. Korf ◽  
I. Spagnuolo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document