fetal pig
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 6)

H-INDEX

26
(FIVE YEARS 1)

Author(s):  
Dieniffer Peixoto-Neves ◽  
Praghalathan Kanthakumar ◽  
Jeremiah M Afolabi ◽  
Hitesh Soni ◽  
Randal K Buddington ◽  
...  

KV7, the voltage-gated potassium channels encoded by KCNQ genes, mediate heterogeneous vascular responses in adult rodents. Postnatal changes in the functional expression of KV7 channels have been reported in rodent saphenous arteries, but their physiological function in the neonatal renal vascular bed is unclear. Here, we report that, unlike adult pigs, only KCNQ1 (KV7.1) out of the five members of KCNQ genes was detected in neonatal pig renal microvessels. KCNQ1 is present in fetal pig kidneys as early as day 50 of gestation, and the level of expression remains the same up to postnatal day 21. Activation of the renal vascular smooth muscle cell (SMC) KV7.1 stimulated whole-cell currents, inhibited by HMR1556 (HMR), a selective KV7.1 blocker. HMR did not change the steady-state diameter of isolated renal microvessels. Similarly, intrarenal artery infusion of HMR did not alter the mean arterial pressure (MAP), renal blood flow (RBF), and renal vascular resistance (RVR) in the pigs. An approximately 20 mmHg reduction in the MAP evoked effective autoregulation of the RBF, which HMR inhibited. We conclude that 1) The expression of KCNQ isoforms in porcine renal microvessels is dependent on kidney maturation, 2) KV7.1 is functionally expressed in neonatal pig renal vascular SMCs, 3) a decrease in arterial pressure up to 20 mmHg induces renal autoregulation in neonatal pigs, and 4) SMC KV7.1 does not control basal renal vascular tone but contributes to neonatal renal autoregulation triggered by a step decrease in arterial pressure.


2021 ◽  
Vol 22 (14) ◽  
pp. 7589
Author(s):  
Anberitha T. Matthews ◽  
Hitesh Soni ◽  
Katherine E. Robinson-Freeman ◽  
Theresa A. John ◽  
Randal K. Buddington ◽  
...  

Doxorubicin (DOX), a category D pregnancy drug, is a chemotherapeutic agent that has been shown in animal studies to induce fetal toxicity, including renal abnormalities. Upregulation of the transient receptor potential cation (TRPC) 6 channel is involved in DOX-induced podocyte apoptosis. We have previously reported that TRPC6-mediated Ca2+ signaling promotes neonatal glomerular mesangial cell (GMC) death. However, it is unknown whether DOX alters mesangial TRPC expression or viability in the fetus. In this study, cell growth was tracked in control and DOX-treated primary GMCs derived from fetal pigs. Live-cell imaging demonstrated that exposure to DOX inhibited the proliferation of fetal pig GMCs and induced cell death. DOX did not alter the TRPC3 expression levels. By contrast, TRPC6 protein expression in the cells was markedly reduced by DOX. DOX treatment also attenuated the TRPC6-mediated intracellular Ca2+ elevation. DOX stimulated mitochondrial reactive oxygen species (mtROS) generation and mitophagy by the GMCs. The DOX-induced mtROS generation and apoptosis were reversed by the mitochondria-targeted antioxidant mitoquinone. These data suggest that DOX-induced fetal pig GMC apoptosis is independent of TRPC6 channel upregulation but requires mtROS production. The mtROS-dependent GMC death may contribute to DOX-induced fetal nephrotoxicity when administered prenatally.


2021 ◽  
Vol 7 ◽  
Author(s):  
Haimei Zhou ◽  
Yixin Chen ◽  
Yongqiang Hu ◽  
Shan Gao ◽  
Wei Lu ◽  
...  

Hoxa1 mutation adversely affect fetal pig development, but whether all-trans retinoic acid (ATRA) administration to Hoxa1+/− pregnant sows can improve Hoxa1−/− fetal pig development defects has not been reported. A total of 24 healthy Hoxa1+/− sows were mated with a healthy Hoxa1+/− boar and randomly assigned to one control group and nine experiment groups. ATRA was orally administered to pregnant sows at the doses of 0, 4, 5, or 6 mg/kg maternal body weight on 12, 13, and 14 days post coitum (dpc), respectively, and a total of 146 live piglets were delivered including 37 Hoxa1−/− piglets and 109 non-Hoxa1−/− piglets. Results indicated that Hoxa1−/− piglets delivered by sows in control group had bilateral microtia, canal atresia and ear's internal defects, and had lower birth liveweight and external ear score than non-Hoxa1−/− neonatal piglets (P < 0.05). Maternal administration with ATRA can effectively correct the development defects of Hoxa1−/− fetal pigs, Hoxa1−/− neonatal piglets delivered by sows administered ATRA at a dose of 4 mg/kg body weight on 14 dpc had higher birth liveweight (P > 0.05) and higher scores of external ear (P < 0.05) compared to Hoxa1−/− neonatal piglets from the control group, but had no significantly difference in terms of birth liveweight and external ear integrity than non-Hoxa1−/− piglets from the control group (P > 0.05). The time of ATRA administration significantly affected Hoxa1−/− fetal development (P < 0.05). Administration of ATRA to Hoxa1+/− pregnant sows at 4 mg/kg body weight on 14 dpc can effectively improve the birth liveweight and ear defects of Hoxa1−/− piglets.


2020 ◽  
Vol 6 (4) ◽  
pp. 438-446
Author(s):  
Jing Wang ◽  
Bi'e Tan ◽  
Jianjun Li ◽  
Xiangfeng Kong ◽  
Minjie Tan ◽  
...  

2019 ◽  
Vol 95 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Shin-ichi Sekiya ◽  
Honami Oota ◽  
Yukari Maruyama ◽  
Mitsuo Sakaihara ◽  
Yoko Takashima

2018 ◽  
Vol 96 (suppl_3) ◽  
pp. 27-27
Author(s):  
Z Fang ◽  
H Zhong ◽  
P Yuan ◽  
S Lin ◽  
X Zhang ◽  
...  

2018 ◽  
Vol 55 (4) ◽  
pp. 521-530 ◽  
Author(s):  
Predrag Novakovic ◽  
Susan E. Detmer ◽  
Muhammad Suleman ◽  
Carol M. Malgarin ◽  
Daniel J. MacPhee ◽  
...  

The placenta is a vital organ providing the developing fetus with nutrient and gas exchange, thermoregulation, and waste elimination necessary for fetal development, as well as producing hormones to maintain pregnancy. It is hypothesized that fetal pig death in porcine reproductive and respiratory syndrome may be attributed to pathology of the maternal-fetal interface leading to premature placental separation. This study was designed to evaluate the chronologic progression of porcine reproductive and respiratory syndrome virus (PRRSV)–induced lesions at the maternal-fetal interface, with particular focus on placental separation in experimentally challenged third-trimester gilts. Fifteen gilts were inoculated with a virulent strain of PRRSV-2 on gestation day 86 ± 0.4. On multiple days postinoculation, 3 gilts along with 1 sham-inoculated control per time point were euthanized, and uterine and fetal placental tissues corresponding to each fetus were collected for histopathologic evaluation. The presence of any fetal lesion was 23 times more likely in compromised (meconium-stained and decomposed) compared with viable fetuses ( P < .001). In PRRSV-infected gilts, endometritis was more severe than placentitis, and the severity of endometrial inflammation and vasculitis increased progressively from 2 to 14 days postinoculation. Neither placental vasculitis nor a chronologic progression in the severity of placental detachment was observed. Severe placental detachment was more frequently present in PRRSV-infected compared with noninfected samples and was most significantly associated with placental inflammation, compared with other uterine lesions, viral load, or termination day. The results of this study suggest that placental separation by itself is not sufficient to significantly compromise fetal viability in reproductive porcine reproductive and respiratory syndrome.


Author(s):  
Gary J. Hausman

AbstractAdipose tissue exists in many locations or depots that differ from one another based on numerous and various characteristics. The unique “layered” anatomical feature of subcutaneous adipose tissue (SAT) in man and the pig is reviewed and discussed. The origin of fetal pig adipose tissue subcutaneous layers is reviewed before the onset of adipogenesis and after the overt adipogenesis. Furthermore, the distinguishing characteristics of developing outer SAT layer (OSQ) and middle SAT layer (MSQ) in pigs are reviewed. These characteristics include adipocyte hypertrophy, metabolism and genetic regulation. The MSQ layer is the major layer in the pig and expands to the greatest degree in obesity and growth. Abdominal SAT in man is composed of deep SAT (dSAT) and superficial SAT (sSAT) layers. Clearly, dSAT expands disproportionally more than sSAT with increasing obesity in Caucasian males which precipitates a number of human pathologies associated with increased adiposity. We reviewed the considerable evidence that demonstrates the distinction between sSAT and dSAT which includes higher levels of saturated fatty acids (FAs) and greater levels of lipolysis in dSAT. Furthermore, dSAT expresses more metabolic and inflammatory genes. Studies comparing visceral adipose tissue (VAT) and dSAT indicate that both depots are implicated in insulin resistance (IR) and other human pathologies. Epigenetic studies of MSQ and dSAT have begun to indicate a role for DNA methylation in gene regulation of these depots. Further studies of dSAT and MSQ are warranted as they are clearly a major manifestation of obesity.


Sign in / Sign up

Export Citation Format

Share Document