scholarly journals Resistance to cutaneous graft-vs.-host disease is not induced in T cell receptor delta gene-mutant mice.

1996 ◽  
Vol 183 (4) ◽  
pp. 1483-1489 ◽  
Author(s):  
T Shiohara ◽  
N Moriya ◽  
J Hayakawa ◽  
S Itohara ◽  
H Ishikawa

The function of murine dendritic epidermal cells (dEC) remains largely speculative, probably because of the lack of a suitable in vivo model, although previous studies suggest that gamma/delta+ dEC may have originally evolved to serve as a self-protection mechanism(s). Our previous study demonstrated that the epidermis of mice that had spontaneously recovered from cutaneous graft-vs-host disease (GVHD) induced by local injection of CD4+ autoreactive T cells contained unexpectedly large numbers of dEC and became resistant to subsequent attempts to induce GVHD in a site-restricted manner, suggesting that the resistance is mediated by dEC. However, because alpha/beta+ dEC as well as gamma/delta+ dEC were greatly increased in number in the epidermis, it was unclear whether gamma/delta+ dEC are indeed responsible for this protection. The availability of this murine model and mice selectively lacking gamma/delta T cells as a result of disruption of the T cell receptor C delta gene segment allowed us to investigate the role of gamma/delta+ dEC. In the epidermis of gamma/delta T cell-deficient mice (delta-/-), a congenital lack of gamma/delta+ dEC was substituted for by alpha/beta+ dEC of either a CD4-8+ or a CD4-8- phenotype. After intradermal injection of the autoreactive T cells, delta-/- mice developed significantly enhanced delayed-type hypersensitivity responses and cutaneous GVHD, which persisted longer than in heterozygous littermate controls (delta+/-). Surprisingly, resistance to the cutaneous GVHD was not induced in the epidermis of delta-/- mice after spontaneous recovery from the GVHD, whereas the "susceptible" epidermis of delta-/+ mice contained large numbers of alpha/beta dEC comparable to those in "resistant" epidermis of delta+/- mice. Injection of day 16 fetal thymocytes from wild-type mice into delta-/- mice resulted in the appearance of donor-type gamma/delta+ dEC in the epidermis, and reconstitution with gamma/delta+ dEC restored the protective immune response of the epidermis against the GVHD to nearly normal levels. These results indicate that gamma/delta+ dEC are responsible for the site-restricted protection against cutaneous GVHD.

1994 ◽  
Vol 180 (5) ◽  
pp. 1685-1691 ◽  
Author(s):  
F Davodeau ◽  
M A Peyrat ◽  
J Gaschet ◽  
M M Hallet ◽  
F Triebel ◽  
...  

Structural diversity of lymphocyte antigen receptors (the immunoglobulin [Ig] of B cells and the alpha/beta or gamma/delta T cell receptor [TCR] of T cells) is generated through somatic rearrangements of V, D, and J gene segments. Classically, these recombination events involve gene segments from the same Ig or TCR locus. However, occurrence of "trans" rearrangements between distinct loci has also been described, although in no instances was the surface expression of the corresponding protein under normal physiological conditions demonstrated. Here we show that hybrid TCR genes generated by trans rearrangement between V gamma and (D) J beta elements are translated into functional antigen receptor chains, paired with TCR alpha chains. Like classical alpha/beta T cells, cells expressing these hybrid TCR chains express either CD4 or CD8 coreceptors and are frequently alloreactive. These results have several implications in terms of T cell repertoire selection and relationships between TCR structure and specificity. First, they suggest that TCR alloreactivity is determined by the repertoire selection processes operating during lymphocyte development rather than by structural features specific to V alpha V beta regions. Second, they suggest the existence of close structural relationships between gamma/delta and alpha/beta TCR and more particularly, between V gamma and V beta regions. Finally, since a significant fraction of PBL (at least 1/10(4)) expressed hybrid TCR chains on their surface, these observations indicate that trans rearrangements significantly contribute to the combinatorial diversification of the peripheral immune repertoire.


1990 ◽  
Vol 172 (6) ◽  
pp. 1805-1817 ◽  
Author(s):  
J D Mountz ◽  
T Zhou ◽  
J Eldridge ◽  
K Berry ◽  
H Blüthmann

The lpr gene in homozygous form induces development of CD4-CD8-B220+ T cells and lymphadenopathy in MRL and C57BL/6 mice. Although the propensity for excessive production of T cells is related to an intrinsic T cell defect, a thymus is also required because neonatal thymectomy eliminates lymphadenopathy. Recent evidence suggests that excessive production and release of autoreactive T cells from the thymus of lpr/lpr mice might lead to downregulation of CD4 and CD8 as a "fail safe" tolerance mechanism that occurs during late thymic or post-thymic development. To test this hypothesis, T cell receptor (TCR) transgenic mice that produce large numbers of immature thymocytes recognizing the H-2Db and male H-Y antigens were backcrossed with C57BL/6-lpr/lpr mice and MRL-lpr/lpr mice. It was predicted that Db male lpr/lpr mice would produce large numbers of autoreactive T cells during early thymic development that would lead to an accelerated lymphoproliferative disease. In contrast, Db female lpr/lpr mice would produce large numbers of Db H-Y-reactive T cells, but might not develop lymphadenopathy because the male H-Y antigen would not be present. Unexpectedly, there was complete elimination of lymphadenopathy in both male and female TCR transgenic lpr/lpr mice. The elimination of lymphadenopathy was not due to a failure of thymic maturation since the thymus of H-2Db female lpr/lpr mice contained nearly normal numbers of mature thymocytes. Elimination of lymphadenopathy was also not due to a lack of autoreactive T cells in the peripheral lymph nodes (LN) since there was an increased syngeneic mixed lymphocyte proliferative response of LNT cells from transgenic lpr/lpr compared with +/+ mice in vitro. Hypergammaglobulinemia and autoantibody production in the transgenic lpr/lpr was present at levels comparable with or higher than control nontransgenic lpr/lpr mice, suggesting a dissociation of autoantibody production from the lymphoproliferative disease in the TCR transgenic mice. Conversely, the development of lymphadenopathy and production of CD4-CD8-B220+ T cells appear to be intimately linked, as both were completely eliminated in T cells expressing the transgenic TCR. We propose that lymphoproliferation and production of CD4-CD8-6B2+ T cells in lpr/lpr mice is related to decreased expression of the TCR, and providing the T cells with a rearranged TCR transgene overcomes this defect.


Diabetes ◽  
1994 ◽  
Vol 43 (4) ◽  
pp. 599-606 ◽  
Author(s):  
P. Santamaria ◽  
C. Lewis ◽  
J. Jessurun ◽  
D. E. Sutherland ◽  
J. J. Barbosa

1990 ◽  
Vol 87 (8) ◽  
pp. 3067-3071 ◽  
Author(s):  
I. Ishida ◽  
S. Verbeek ◽  
M. Bonneville ◽  
S. Itohara ◽  
A. Berns ◽  
...  

1992 ◽  
Vol 175 (4) ◽  
pp. 907-915 ◽  
Author(s):  
S Yoshino ◽  
L G Cleland

The effects of treatment with a monoclonal antibody (R73 mAb) against T cell receptor alpha/beta (TCR-alpha/beta) on both established adjuvant arthritis (EAA) and established collagen-induced arthritis (ECIA) in rats have been investigated. Rats were treated with R73 mAb when arthritis reached a peak. Treatment with the anti-TCR-alpha/beta mAb markedly suppressed EAA, whereas ECIA was not affected by the mAb treatment. Histologically, R73 mAb-treated rats with EAA showed mild hyperplasia of synovial tissues, sparse infiltration of inflammatory cells, and minimal erosion of cartilage, whereas arthritic rats treated with PBS and an irrelevant control mAb against Giardia had marked hyperplasia of synovium with pannus, massive inflammatory cell infiltrate, and severe destruction of cartilage and subchondral bone. R73 mAb-treated rats with ECIA exhibited pronounced formation of pannus containing many inflammatory cells and marked cartilage and subchondral damage similar to those in arthritic rats that received the control treatments. Treatment with R73 mAb depleted markedly alpha/beta+ T cells in both peripheral blood and synovial tissues of rats with EAA and ECIA. R73 mAb treatment was associated with marked reduction in arthritogen-specific delayed-type hypersensitivity responses in both EAA and ECIA. The titers of antibodies against type II collagen produced in rats with ECIA were not affected by the mAb. Thus, alpha/beta+ T cells appear to have a central role in EAA, but not in chronic ECIA.


1991 ◽  
Vol 174 (2) ◽  
pp. 417-424 ◽  
Author(s):  
T Abo ◽  
T Ohteki ◽  
S Seki ◽  
N Koyamada ◽  
Y Yoshikai ◽  
...  

We demonstrated in the present study that with bacterial stimulation, an increased number of alpha/beta T cells proliferated in the liver of mice and that even T cells bearing self-reactive T cell receptor (TCR) (or forbidden T cell clones), as estimated by anti-V beta monoclonal antibodies in conjunction with immunofluorescence tests, appeared in the liver and, to some extent, in the periphery. The majority (greater than 80%) of forbidden clones induced had double-negative CD4-8-phenotype. In a syngeneic mixed lymphocyte reaction, these T cells appear to be self-reactive. Such forbidden clones and normal T cells in the liver showed a two-peak pattern of TCR expression, which consisted of alpha/beta TCR dull and bright positive cells, as seen in the thymus. A systematic analysis of TCR staining patterns in the various organs was then carried out. T cells from not only the thymus but also the liver had the two-peak pattern of alpha/beta TCR, whereas all of the other peripheral lymphoid organs had a single-peak pattern of TCR. However, T cells in the liver were not comprised of double-positive CD4+8+ cells, which predominantly reside in the thymus. The present results therefore suggest that T cell proliferation in the liver might reflect a major extrathymic pathway for T cell differentiation and that this hepatic pathway has the ability to produce T cells bearing self-reactive TCR under bacterial stimulation, probably due to the lack of a double-positive stage for negative selection.


1996 ◽  
Vol 183 (5) ◽  
pp. 2271-2282 ◽  
Author(s):  
L Wen ◽  
W Pao ◽  
F S Wong ◽  
Q Peng ◽  
J Craft ◽  
...  

The production of class-switched antibodies, particularly immunoglobulin (Ig) G1 and IgE, occurs efficiently in T cell receptor (TCR) alpha-/- mice that are congenitally devoid of alpha/beta T cells. This finding runs counter to a wealth of data indicating that IgG1 and IgE synthesis are largely dependent on the collaboration between B and alpha/beta T cells. Furthermore, many of the antibodies synthesized in TCR alpha-/- mice are reactive to a similar spectrum of self-antigens as that targeted by autoantibodies characterizing human systemic lupus erythematosus (SLE). SLE, too, is most commonly regarded as an alpha/beta T cell-mediated condition. To distinguish whether the development of autoantibodies in TCR alpha-/- mice is due to an intrinsic de-regulation of B cells, or to a heretofore poorly characterized collaboration between B and "non-alpha/beta T" cells, the phenotype has been reconstituted by transfer of various populations of B and non-alpha/beta T cells including cloned gamma/delta T cells derived from TCR alpha-/- mice, to severe combined immunodeficient (SCID) mice. The results establish that the reproducible production of IgG1 (including autoantibodies) is a product of non-alpha/beta T cell help that can be provided by gamma/delta T cells. This type of B-T collaboration sustains the production of germinal centers, lymphoid follicles that ordinarily are anatomical signatures of alpha/beta T-B cell collaboration. Thus, non-alpha/beta T cell help may drive Ig synthesis and autoreactivity under various circumstances, especially in cases of alpha/beta T cell immunodeficiency.


1995 ◽  
Vol 15 (12) ◽  
pp. 7022-7031 ◽  
Author(s):  
J Shutter ◽  
J A Cain ◽  
S Ledbetter ◽  
M D Rogers ◽  
R D Hockett

T cells can be divided into two groups on the basis of the expression of either alpha beta or gamma delta T-cell receptors (TCRs). Because the TCR delta chain locus lies within the larger TCR alpha chain locus, control of the utilization of these two receptors is important in T-cell development, specifically for determination of T-cell type: rearrangement of the alpha locus results in deletion of the delta coding segments and commitment to the alpha beta lineage. In the developing thymus, a relative site-specific recombination occurs by which the TCR delta chain gene segments are deleted. This deletion removes all D delta, J delta, and C delta genes and occurs on both alleles. This delta deletional mechanism is evolutionarily conserved between mice and humans. Transgenic mice which contain the human delta deleting elements and as much internal TCR delta chain coding sequence as possible without allowing the formation of a complete delta chain gene were developed. Several transgenic lines showing recombinations between deleting elements within the transgene were developed. These lines demonstrate that utilization of the delta deleting elements occurs in alpha beta T cells of the spleen and thymus. These recombinations are rare in the gamma delta population, indicating that the machinery for utilization of delta deleting elements is functional in alpha beta T cells but absent in gamma delta T cells. Furthermore, a discrete population of early thymocytes containing delta deleting element recombinations but not V alpha-to-J alpha rearrangements has been identified. These data are consistent with a model in which delta deletion contributes to the implementation of a signal by which the TCR alpha chain locus is rearranged and expressed and thus becomes an alpha beta T cell.


Sign in / Sign up

Export Citation Format

Share Document