scholarly journals Germinal center formation, immunoglobulin class switching, and autoantibody production driven by "non alpha/beta" T cells.

1996 ◽  
Vol 183 (5) ◽  
pp. 2271-2282 ◽  
Author(s):  
L Wen ◽  
W Pao ◽  
F S Wong ◽  
Q Peng ◽  
J Craft ◽  
...  

The production of class-switched antibodies, particularly immunoglobulin (Ig) G1 and IgE, occurs efficiently in T cell receptor (TCR) alpha-/- mice that are congenitally devoid of alpha/beta T cells. This finding runs counter to a wealth of data indicating that IgG1 and IgE synthesis are largely dependent on the collaboration between B and alpha/beta T cells. Furthermore, many of the antibodies synthesized in TCR alpha-/- mice are reactive to a similar spectrum of self-antigens as that targeted by autoantibodies characterizing human systemic lupus erythematosus (SLE). SLE, too, is most commonly regarded as an alpha/beta T cell-mediated condition. To distinguish whether the development of autoantibodies in TCR alpha-/- mice is due to an intrinsic de-regulation of B cells, or to a heretofore poorly characterized collaboration between B and "non-alpha/beta T" cells, the phenotype has been reconstituted by transfer of various populations of B and non-alpha/beta T cells including cloned gamma/delta T cells derived from TCR alpha-/- mice, to severe combined immunodeficient (SCID) mice. The results establish that the reproducible production of IgG1 (including autoantibodies) is a product of non-alpha/beta T cell help that can be provided by gamma/delta T cells. This type of B-T collaboration sustains the production of germinal centers, lymphoid follicles that ordinarily are anatomical signatures of alpha/beta T-B cell collaboration. Thus, non-alpha/beta T cell help may drive Ig synthesis and autoreactivity under various circumstances, especially in cases of alpha/beta T cell immunodeficiency.

1991 ◽  
Vol 174 (1) ◽  
pp. 293-296 ◽  
Author(s):  
M Iwashima ◽  
M M Davis ◽  
Y H Chien

CD4 and CD8 have been useful surface markers for alpha/beta T cell maturation. In an alpha/beta T cell receptor (TCR) transgenic SCID mice system, it has been shown that alpha/beta TCR alone is sufficient to induce CD4 and CD8 surface expression on thymic T cells. Although the late embryonic thymic gamma/delta T cells are predominately single and double positive, it has not been clear if gamma/delta TCR has a similar capacity. In this study, we show that when transgenes encoding the earliest embryonic gamma/delta TCR are coexpressed with the SCID defect, the gamma/delta transgenes promote the appearance of both the CD4-8- and CD4+8+ T cells in the thymus. Furthermore, the expression of CD4 and CD8 does not require continuous surface gamma/delta TCR expression. These results indicate that gamma/delta TCR alone can promote the CD4/8 surface expression, and may suggest a role for gamma/delta T cells in initiating normal thymic ontogeny.


Diabetes ◽  
1994 ◽  
Vol 43 (4) ◽  
pp. 599-606 ◽  
Author(s):  
P. Santamaria ◽  
C. Lewis ◽  
J. Jessurun ◽  
D. E. Sutherland ◽  
J. J. Barbosa

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A112-A112
Author(s):  
Sarah Asbury ◽  
Seung Mi Yoo ◽  
Jonathan Bramson

BackgroundEngineered T cell therapies have revolutionized treatment of relapsed refractory haematological malignancies, however the cost of treatment for autologous products remains a significant challenge to their widespread use. The high cost is driven largely by the need for personalized manufacturing of autologous cell products. A non-conventional class of T cells, the gamma/delta T cell, can be safely transplanted into an unrelated recipient without inducing graft-versus host disease,1 making them an ideal candidate for mass-manufactured off-the-shelf T cell therapies. We have previously described a novel method of directing conventional alpha/beta T cells towards tumour targets by co-opting the T cell receptor using the T cell Antigen Coupler (TAC) receptor.2 Here, we describe the use of TAC receptors to engineer antigen-specific reactivity into gamma/delta T cells, resulting in highly potent anti-tumor cytotoxicity.MethodsEngineered gamma/delta T cells were manufactured by activating PBMCs with Zoledronate and IL-2. The TAC transgene was introduced into T cells using either VSV-G pseudotype lentivirus or GALV-psuedotyped gamma-retrovirus vectors.Through optimization studies, we determined transduction was highest 24 hours post-activation for lentivirus and 72 hours post-activation for gamma-retrovirus. Cultures were fed with IL-2 supplemented media every 2 – 3 days and enriched on Day 14 to >99% gamma/delta T cell purity using CD4/CD8 magnetic-activated cell sorting depletion (Miltenyi Biotec).ResultsBoth methods of gene transfer tested for our pilot study yielded excellent gene transduction (40% - 70%). Using lentivirus-engineered gamma/delta T cells, we demonstrated that the TAC receptor re-directs gamma/delta T cells to attack tumors in an antigen-specific manner. The presence of the TAC receptor did not interfere with lysis of tumor cells via the natural tumor-reactive gamma/delta T cell receptors. Importantly, TAC-engineered gamma/delta T cells displayed robust cytotoxicity at very low effector:target ratios (<1) and caused regression of human tumor xenografts that were otherwise resistant to non-engineered gamma/delta T cells. Curiously, gamma/delta T cell manufacturing was sensitive to the quality of the lentivirus product, where products with low titers were associated with outgrowth of conventional alpha/beta T cells. Outgrowth of alpha/beta T cells was not observed with gamma-retroviruses. We are presently evaluating the anti-tumor activity of gamma-retrovirus-engineered gamma/delta T cells.ConclusionsOff-the-shelf engineered gamma/delta T cells represent a strategy to reduce manufacturing cost and may represent the next generation of engineered T cell therapies.TAC receptors provide a robust tool for directing gamma/delta T cells to attack tumors that are otherwise resistant to gamma/delta T cells and should be evaluated further.AcknowledgementsThis work was supported by the Samuel Family Foundation, the Ontario Centres of Excellence and Triumvira Immunologics.Ethics ApprovalThe study was approved by McMaster’s Animal Research Ethics Board, AUP#19-02-10.ReferencesArruda LCM, Gaballa A, Uhlin M. Impact of γδ T cells on clinical outcome of hematopoietic stem cell transplantation: systematic review and meta-analysis. Blood Adv 2019;3(21):3436–3448.Helsen CW, Hammill JA, Lau VWC, et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat Commun 2018;9(1):3049.


1993 ◽  
Vol 177 (2) ◽  
pp. 257-263 ◽  
Author(s):  
D Dunon ◽  
M D Cooper ◽  
B A Imhof

Current evidence suggests both thymic and extrathymic origins for T cells. Studies in mice favor an in situ origin for a prominent population of intestinal intraepithelial lymphocytes that express gamma/delta T cell receptor (TCR). This developmental issue is explored in an avian model in which the gamma/delta lymphocytes constitute a major T cell subpopulation that is accessible for study during the earliest stages of lymphocyte development. In the chick embryo, cells bearing the gamma/delta TCR appear first in the thymus where they reach peak levels on days 14-15 of embryogenesis, just 2 d before gamma/delta T cells appear in the intestine. Using two congenic chick strains, one of which expresses the ov antigen, we studied the origin and kinetics of intestinal colonization by gamma/delta T cells. The embryonic gamma/delta+ thymocytes homed to the intestine where they survived for months, whereas an embryonic gamma/delta- thymocyte population enriched in thymocyte precursors failed to give rise to intestinal gamma/delta+ T cells. Embryonic hemopoietic tissues, bone marrow, and spleen, were also ineffective sources for intestinal gamma/delta+ T cells. Intestinal colonization by gamma/delta+ thymocytes occurred in two discrete waves in embryos and newly hatched birds. The data indicate that intestinal gamma/delta T cells in the chicken are primarily thymic migrants that are relatively long-lived.


1995 ◽  
Vol 15 (12) ◽  
pp. 7022-7031 ◽  
Author(s):  
J Shutter ◽  
J A Cain ◽  
S Ledbetter ◽  
M D Rogers ◽  
R D Hockett

T cells can be divided into two groups on the basis of the expression of either alpha beta or gamma delta T-cell receptors (TCRs). Because the TCR delta chain locus lies within the larger TCR alpha chain locus, control of the utilization of these two receptors is important in T-cell development, specifically for determination of T-cell type: rearrangement of the alpha locus results in deletion of the delta coding segments and commitment to the alpha beta lineage. In the developing thymus, a relative site-specific recombination occurs by which the TCR delta chain gene segments are deleted. This deletion removes all D delta, J delta, and C delta genes and occurs on both alleles. This delta deletional mechanism is evolutionarily conserved between mice and humans. Transgenic mice which contain the human delta deleting elements and as much internal TCR delta chain coding sequence as possible without allowing the formation of a complete delta chain gene were developed. Several transgenic lines showing recombinations between deleting elements within the transgene were developed. These lines demonstrate that utilization of the delta deleting elements occurs in alpha beta T cells of the spleen and thymus. These recombinations are rare in the gamma delta population, indicating that the machinery for utilization of delta deleting elements is functional in alpha beta T cells but absent in gamma delta T cells. Furthermore, a discrete population of early thymocytes containing delta deleting element recombinations but not V alpha-to-J alpha rearrangements has been identified. These data are consistent with a model in which delta deletion contributes to the implementation of a signal by which the TCR alpha chain locus is rearranged and expressed and thus becomes an alpha beta T cell.


2006 ◽  
Vol 118 (2-3) ◽  
pp. 243-249 ◽  
Author(s):  
Sunil Kumar Chauhan ◽  
Naresh Kumar Tripathy ◽  
Nakul Sinha ◽  
Soniya Nityanand

1994 ◽  
Vol 180 (5) ◽  
pp. 1685-1691 ◽  
Author(s):  
F Davodeau ◽  
M A Peyrat ◽  
J Gaschet ◽  
M M Hallet ◽  
F Triebel ◽  
...  

Structural diversity of lymphocyte antigen receptors (the immunoglobulin [Ig] of B cells and the alpha/beta or gamma/delta T cell receptor [TCR] of T cells) is generated through somatic rearrangements of V, D, and J gene segments. Classically, these recombination events involve gene segments from the same Ig or TCR locus. However, occurrence of "trans" rearrangements between distinct loci has also been described, although in no instances was the surface expression of the corresponding protein under normal physiological conditions demonstrated. Here we show that hybrid TCR genes generated by trans rearrangement between V gamma and (D) J beta elements are translated into functional antigen receptor chains, paired with TCR alpha chains. Like classical alpha/beta T cells, cells expressing these hybrid TCR chains express either CD4 or CD8 coreceptors and are frequently alloreactive. These results have several implications in terms of T cell repertoire selection and relationships between TCR structure and specificity. First, they suggest that TCR alloreactivity is determined by the repertoire selection processes operating during lymphocyte development rather than by structural features specific to V alpha V beta regions. Second, they suggest the existence of close structural relationships between gamma/delta and alpha/beta TCR and more particularly, between V gamma and V beta regions. Finally, since a significant fraction of PBL (at least 1/10(4)) expressed hybrid TCR chains on their surface, these observations indicate that trans rearrangements significantly contribute to the combinatorial diversification of the peripheral immune repertoire.


1993 ◽  
Vol 178 (3) ◽  
pp. 985-996 ◽  
Author(s):  
M J Skeen ◽  
H K Ziegler

Peritoneal gamma/delta T cells from Listeria-immune mice show an enhanced potential to expand when restimulated with antigens or mitogens in vitro (see companion paper [Skeen, M. J., and H. K. Ziegler. 1993. J. Exp. Med. 178:971]). When cocultured with peritoneal alpha/beta T cells, the gamma/delta T cell population expanded preferentially even when the in vitro stimulus was specific for the alpha/beta T cell population. Purified gamma/delta T cells did not respond to alpha/beta T cell-specific stimuli. If isolated T cell subsets were recombined in cell mixing experiments, the resulting proliferative response was greater than additive. Irradiated alpha/beta T cells could enhance the proliferation of responding gamma/delta T cells, but the effect was unidirectional; i.e., irradiated gamma/delta T cells did not stimulate responding gamma/delta T cells. This effect appeared to be cytokine mediated and did not require cell-cell contact. Both recombinant interleukin 2 (rIL-2) and rIL-7 could support the expansion of the gamma/delta T cells, while rIL-7 was only minimally stimulatory for the alpha/beta T cells. The magnitude of the response by gamma/delta T cells to rIL-7 exceeded the response to other in vitro stimuli, including immobilized anti-T cell receptor monoclonal antibody, and was 50-100-fold greater than the alpha/beta T cell response to IL-7. This unique sensitivity of gamma/delta T cells to IL-7 was strongly enhanced by the presence of accessory cells. These cells could be replaced by rIL-1, establishing a synergy for IL-1 and IL-7 as factors that could uniquely stimulate this gamma/delta T cell population. Isolated peritoneal gamma/delta T cells from Listeria-immune mice react to heat-killed Listeria preparations in the presence of macrophages accessory cells in a non-H-2-restricted manner. Considered collectively, these results suggest a potential mechanism by which gamma/delta T cells can predominate in epithelial tissues and at sites of infection.


1988 ◽  
Vol 168 (6) ◽  
pp. 2231-2249 ◽  
Author(s):  
M L Toribio ◽  
A de la Hera ◽  
J Borst ◽  
M A Marcos ◽  
C Márquez ◽  
...  

In this report, we have undertaken the phenotypic, functional and molecular characterization of a minor (less than 5%) subpopulation of adult thymocytes regarded as the earliest intrathymic T-cell precursors. Pro-T cells were immunoselected and shown to express different hematopoietic cell markers (CD45, CD38, CD7, CD5) and some activation-related molecules (4F2, Tr, HLA class II), but lack conventional T cell antigens (CD2-1-3-4-8-). TCR-gamma RNA messages are already expressed at this early ontogenic stage, while alpha and beta chain TCR genes remain in germline configuration. In vitro analyses of the growth requirements of pro-T cells demonstrated the involvement of the IL-2 pathway in promoting their proliferation and differentiation into CD3+ CD4+ or CD8+ mature thymocytes. Moreover, during the IL-2-mediated maturation process rearrangements and expression of both alpha and beta chain TCR genes occurred, and resulted in the acquisition of alpha/beta as well as gamma/delta (either disulphide-linked or non-disulphide-linked) heterodimeric TCR among the pro-T cell progeny.


Sign in / Sign up

Export Citation Format

Share Document