scholarly journals Interleukin (IL)-6 Directs the Differentiation of IL-4–producing CD4+ T Cells

1997 ◽  
Vol 185 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Mercedes Rincón ◽  
Juan Anguita ◽  
Tetsuo Nakamura ◽  
Erol Fikrig ◽  
Richard A. Flavell

Interleukin (IL)-4 is the most potent factor that causes naive CD4+ T cells to differentiate to the T helper cell (Th) 2 phenotype, while IL-12 and interferon γ trigger the differentiation of Th1 cells. However, the source of the initial polarizing IL-4 remains unclear. Here, we show that IL-6, probably secreted by antigen-presenting cells, is able to polarize naive CD4+ T cells to effector Th2 cells by inducing the initial production of IL-4 in CD4+ T cells. These results show that the nature of the cytokine (IL-12 or IL-6), which is produced by antigen-presenting cells in response to a particular pathogen, is a key factor in determining the nature of the immune response.

2000 ◽  
Vol 192 (7) ◽  
pp. 977-986 ◽  
Author(s):  
Gregory Z. Tau ◽  
Thierry von der Weid ◽  
Binfeng Lu ◽  
Simone Cowan ◽  
Marina Kvatyuk ◽  
...  

One mechanism regulating the ability of different subsets of T helper (Th) cells to respond to cytokines is the differential expression of cytokine receptors. For example, Th2 cells express both chains of the interferon γ receptor (IFN-γR), whereas Th1 cells do not express the second chain of the IFN-γR (IFN-γR2) and are therefore unresponsive to IFN-γ. To determine whether the regulation of IFN-γR2 expression, and therefore IFN-γ responsiveness, is important for the differentiation of naive CD4+ T cells into Th1 cells or for Th1 effector function, we generated mice in which transgenic (TG) expression of IFN-γR2 is controlled by the CD2 promoter and enhancer. CD4+ T cells from IFN-γR2 TG mice exhibit impaired Th1 polarization potential in vitro. TG mice also display several defects in Th1-dependent immunity in vivo, including attenuated delayed-type hypersensitivity responses and decreased antigen-specific IFN-γ production. In addition, TG mice mount impaired Th1 responses against Leishmania major, as manifested by increased parasitemia and more severe lesions than their wild-type littermates. Together, these data suggest that the sustained expression of IFN-γR2 inhibits Th1 differentiation and function. Therefore, the acquisition of an IFN-γ–unresponsive phenotype in Th1 cells plays a crucial role in the development and function of these cells.


2004 ◽  
Vol 199 (12) ◽  
pp. 1619-1630 ◽  
Author(s):  
Petr Bocek ◽  
Gilles Foucras ◽  
William E. Paul

Classical studies have demonstrated that in vitro priming of naive CD4 T cells to become T helper (Th)2 cells is strikingly dependent on interleukin (IL)-4, whereas priming for interferon (IFN)γ production is IL-12/IFNγ-dependent. Therefore, it was quite surprising when we noted that priming of naive C57BL/6 CD4+ cells to become IL-4 producers was substantially inhibited by the addition of anti-IFNγ antibodies. This was true using immobilized anti-CD3 and anti-CD28 antibodies or soluble anti-CD3/anti-CD28 and antigen-presenting cells in the presence or absence of added IL-4. Priming of CD4 T cells from IFNγ−/− C57BL/6 mice with immobilized anti-CD3 and anti-CD28 resulted in limited production of IL-4, even with the addition of 1,000 U/ml of IL-4. Titrating IFNγ into such cultures showed a striking increase in the proportion of T cells that secreted IL-4 upon challenge; this effect was completely IL-4–dependent in that it was blocked with anti–IL-4 antibody. Thus, IFNγ plays an unanticipated but substantial role in Th2 priming, although it is an important Th1 cytokine, and under certain circumstances a Th1 inducer.


1996 ◽  
Vol 184 (2) ◽  
pp. 473-483 ◽  
Author(s):  
T Sornasse ◽  
P V Larenas ◽  
K A Davis ◽  
J E de Vries ◽  
H Yssel

The development of CD4+ T helper (Th) type 1 and 2 cells is essential for the eradication of pathogens, but can also be responsible for various pathological disorders. Therefore, modulation of Th cell differentiation may have clinical utility in the treatment of human disease. Here, we show that interleukin (IL) 12 and IL-4 directly induce human neonatal CD4- T cells, activated via CD3 and CD28, to differentiate into Th1 and Th2 subsets. In contrast, IL-13, which shares many biological activities with IL-4, failed to induce T cell differentiation, consistent with the observation that human T cells do not express IL-13 receptors. Both the IL-12-induced Th1 subset and the IL-4-induced Th2 subset produce large quantities of IL-10, confirming that human IL-10 is not a typical human Th2 cytokine. Interestingly, IL-4-driven Th2 cell differentiation was completely prevented by an IL-4 mutant protein (IL-4.Y124D), indicating that this molecule acts as a strong IL-4 receptor antagonist. Analysis of single T cells producing interferon gamma or IL-4 revealed that induction of Th1 cell differentiation occurred rapidly and required only 4 d of priming of the neonatal CD4+ T cells in the presence of IL-12. The IL-12-induced Th1 cell phenotype was stable and was not significantly affected when repeatedly stimulated in the presence of recombinant IL-4. In contrast, the differentiation of Th2 cells occurred slowly and required not only 6 d of priming, but also additional restimulation of the primed CD4+ T cells in the presence of IL-4. Moreover, IL-4-induced Th2 cell phenotypes were not stable and could rapidly be reverted into a population predominantly containing Th0 and Th1 cells, after a single restimulation in the presence of IL-12. The observed differences in stability of IL-12- and IL-4-induced human Th1 and Th2 subsets, respectively, may have implications for cytokine-based therapies of chronic disease.


2019 ◽  
Vol 10 ◽  
Author(s):  
Masato Mashimo ◽  
Masayo Komori ◽  
Yuriko Y. Matsui ◽  
Mami X. Murase ◽  
Takeshi Fujii ◽  
...  

2020 ◽  
Vol 4 (12) ◽  
pp. 2595-2605 ◽  
Author(s):  
Ole Audun W. Haabeth ◽  
Kjartan Hennig ◽  
Marte Fauskanger ◽  
Geir Åge Løset ◽  
Bjarne Bogen ◽  
...  

Abstract CD4+ T cells may induce potent antitumor immune responses through interaction with antigen-presenting cells within the tumor microenvironment. Using a murine model of multiple myeloma, we demonstrated that adoptive transfer of idiotype-specific CD4+ T cells may elicit curative responses against established multifocal myeloma in bone marrow. This finding indicates that the myeloma bone marrow niche contains antigen-presenting cells that may be rendered tumoricidal. Given the complexity of the bone marrow microenvironment, the mechanistic basis of such immunotherapeutic responses is not known. Through a functional characterization of antitumor CD4+ T-cell responses within the bone marrow microenvironment, we found that killing of myeloma cells is orchestrated by a population of bone marrow–resident CD11b+F4/80+MHC-IIHigh macrophages that have taken up and present secreted myeloma protein. The present results demonstrate the potential of resident macrophages as powerful mediators of tumor killing within the bone marrow and provide a basis for novel therapeutic strategies against multiple myeloma and other malignancies that affect the bone marrow.


1996 ◽  
Vol 183 (6) ◽  
pp. 2669-2674 ◽  
Author(s):  
F Powrie ◽  
J Carlino ◽  
M W Leach ◽  
S Mauze ◽  
R L Coffman

A T helper type 1 (Th1)-mediated colitis with similarities to inflammatory bowel disease in humans developed in severe combined immunodeficiency mice reconstituted with CD45RB(high) CD4+ splenic T cells and could be prevented by cotransfer of CD45RB(low) CD4+ T cells. Inhibition of this Th1 response by the CD45RB(low) T cell population could be reversed in vivo by an anti-transforming growth factor (TGF) beta antibody. Interleukin (IL) 4 was not required for either the differentiation of function of protective cells as CD45RB(low) CD4+ cells from IL-4-deficient mice were fully effective. These results identify a subpopulation of peripheral CD4+ cells and TGF-beta as critical components of the natural immune regulatory mechanism, which prevents the development of pathogenic Th1 responses in the gut, and suggests that this immunoregulatory population is distinct from Th2 cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3709-3709
Author(s):  
Anjum S. Kaka ◽  
Ryan Hartmeier ◽  
Ann M. Leen ◽  
An Lu ◽  
Cliona M. Rooney ◽  
...  

Abstract IL-21 is a potent cytokine that augments the proliferation and effector function of NK cells and acts in synergy with other γ-chain cytokines to enhance the cytotoxicity of T lymphocytes. IL-21 is transiently produced by activated CD4+ T cells and may facilitate the generation of effector and memory T cells. Recently, T cells have been shown to be effective antigen presenting cells (TAPC) and we hypothesized that this characteristic may be enhanced through overexpression of IL-21 following genetic modification of TAPC. We demonstrate here that transduction of TAPC with IL-21 significantly enhances the generation of MART-1-specific CD8+ T cells suggesting a potential use for IL-21 in tumor immunotherapy protocols. IL-21 was cloned from CD3/CD28-activated CD4+ T cells and inserted into the SFG retroviral vector. To generate IL-21-producing T-APC, CD8-selected T cells from healthy, HLA-A2 donors were stimulated on αCD3/αCD28-coated plates in the presence of IL-2. After 2 days, activated cells were harvested and transduced on Retronectin-coated plates with IL-21 retroviral supernatant. On day 5, TAPC were washed and expanded in growth media supplemented by IL-2. Prior to use as APCs, TAPCs were CD4-depleted by MACS to eliminate residual IL-21 production by CD4+ T cells. IL-21-transduced and non-transduced (NT) CD8+ TAPC pulsed with MART-1 HLA-A2-restricted peptide (ELAGIGILTV) were irradiated and cocultured with autologous CD8+ peripheral blood T cells in media supplemented with IL-7 and IL-12. On day 7, responder T cell cultures were restimulated with peptide-loaded IL-21 or NT CD8+ TAPCs in the presence of IL-2 to induce expansion. Responder T cell cultures were then analyzed for MART-1 specificity by pentamer, ELISPOT and cytotoxicity assays and for their memory phenotype using monoclonal antibodies to CD27, CD28, CD62L, CD45RA, CD45RO, CD127 and CCR7. TAPC were efficiently expanded (>100-fold expansion) and transduced by retrovirus encoding IL-21 (>50% as measured by GFP). Gene modification of TAPC with IL-21 had minimal effect on MHC class I, II, CD80, CD83 and CD86 levels when compared to NT TAPC. However, there was increased expression of CD27, CD28 and CD62L, suggesting that IL-21 was biologically active. Seven days after stimulation with MART-1/ELA peptide-pulsed IL-21-TAPC and NT-TAPC, we observed a substantial increase (10±5-fold) in ELA-specific T cells in cultures stimulated with IL-21-TAPC compared to NT-TAPC when analyzed by FACS using ELA pentamers. Subsequent stimulation with IL-21-TAPCs amplified this effect, resulting in >50-fold increase in absolute ELA-specific T cell numbers when compared to NT-TAPC. ELA-specific CTL generated from IL-21-TAPC stimulation were functional as determined by IFN-γ ELISPOT and cytotoxicity assays. ELA-specific CTL generated from IL-21-TAPC exhibited a unique phenotype (CD45RA−, CD27high, CD28high, CD62Lhigh) as compared to CTL generated form NT-TAPC (CD45RA−, CD27low, CD28low, CD62Llow) suggesting that IL-21 may play a role in the development of T cell memory. In summary, IL-21 enhances the generation of tumor-specific CD8+ T cells which exhibit a central/effector memory phenotype. Our results indicate that IL-21 improves proliferation of antigen-specific T cells, possibly by maintaining CD28 expression allowing costimulation upon secondary antigen encounter.


Sign in / Sign up

Export Citation Format

Share Document