scholarly journals P-Selectin Glycoprotein Ligand-1 (PSGL-1) on T Helper 1 but Not on T Helper 2 Cells Binds to P-Selectin and Supports Migration into Inflamed Skin

1997 ◽  
Vol 185 (3) ◽  
pp. 573-578 ◽  
Author(s):  
Eric Borges ◽  
Wolfgang Tietz ◽  
Martin Steegmaier ◽  
Thomas Moll ◽  
Rupert Hallmann ◽  
...  

We have shown recently that mouse Th1 cells but not Th2 cells are selectively recruited into inflamed sites of a delayed-type hypersensitivity (DTH) reaction of the skin. This migration was blocked by monoclonal antibodies (mAb) against P- and E-selectin. Here we show that Th1 cells bind to P-selectin via the P-selectin glycoprotein ligand-1 (PSGL-1). This is the only glycoprotein ligand that was detectable by affinity isolation with a P-selectin–Ig fusion protein. Binding of Th1 cells to P-selectin, as analyzed by flow cytometry and in cell adhesion assays, was completely blocked by antibodies against PSGL-1. The same antibodies blocked partially the migration of Th1 cells into cutaneous DTH reactions. This blocking activity, in combination with that of a mAb against E-selectin, was additive. PSGL-1 on Th2 cells, although expressed at similar levels as on Th1 cells, did not support binding to P-selectin. Thus, the P-selectin–binding form of PSGL-1 distinguishes Th1 cells from Th2 cells. Furthermore, PSGL-1 is relevant for the entry of Th1 cells into inflamed areas of the skin. This is the first demonstration for the importance of PSGL-1 for mouse leukocyte recruitment in vivo.

1988 ◽  
Vol 168 (2) ◽  
pp. 543-558 ◽  
Author(s):  
R Fernandez-Botran ◽  
V M Sanders ◽  
T R Mosmann ◽  
E S Vitetta

Murine Th1 and Th2 subsets differ not only in the lymphokines they produce, but also functionally. It is not clear what factors influence the preferential activation of one subset versus the other and what regulatory interactions exist between them. The purpose of this study was to examine the effect of lymphokines produced by clones of Th1 cells (IL-2 and IFN-gamma), Th2 cells (IL-4), and APC (IL-1) on the proliferative response of Th1 and Th2 cells after antigenic stimulation. Activation of both types of clones in the presence of antigen and APC resulted in the acquisition of responsiveness to the proliferative effects of both IL-2 and IL-4, although Th2 cells were more responsive to IL-4 than Th1 cells. Responsiveness of Th1 and Th2 cells to both lymphokines decreased with time after initial antigenic activation; Th1 cells lost their responsiveness to IL-4 more rapidly and to IL-2 more slowly than Th2 cells. IFN-gamma partially inhibited the IL-2 and IL-4-mediated proliferation of Th2, but not Th1 cells. Although the presence of IL-1 was not required for the response of Th1 or Th2 cells to IL-4, its presence resulted in a synergistic effect with IL-2 or IL-4 in Th2 but not in Th1 cells. Both subsets responded to a mixture of IL-2 and IL-4 in synergistic fashion. Delayed addition and wash-out experiments indicated that both IL-2 and IL-4 had to be present simultaneously in order for synergy to occur. These results suggest that Th cell subsets might regulate each other via the lymphokines that they secrete and that the pathways of IL-2 and IL-4 mediated proliferation are interrelated.


1998 ◽  
Vol 188 (6) ◽  
pp. 1191-1196 ◽  
Author(s):  
Mark H. Kaplan ◽  
Andrea L. Wurster ◽  
Michael J. Grusby

The differentiation of T helper (Th) cells is regulated by members of the signal transducer and activator of transcription (STAT) family of signaling molecules. We have generated mice lacking both Stat4 and Stat6 to examine the ability of Th cells to develop in the absence of these two transcription factors. Stat4, Stat6−/− lymphocytes fail to differentiate into interleukin (IL)-4–secreting Th2 cells. However, in contrast to Stat4−/− lymphocytes, T cells from Stat4, Stat6−/− mice produce significant amounts of interferon (IFN)-γ when activated in vitro. Although Stat4, Stat6−/− lymphocytes produce less IFN-γ than IL-12–stimulated control lymphocytes, equivalent numbers of IFN-γ–secreting cells can be generated from cultures of Stat4, Stat6−/− lymphocytes activated under neutral conditions and control lymphocytes activated under Th1 cell–promoting conditions. Moreover, Stat4, Stat6−/− mice are able to mount an in vivo Th1 cell–mediated delayed-type hypersensitivity response. These results support a model of Th cell differentiation in which the generation of Th2 cells requires Stat6, whereas a Stat4-independent pathway exists for the development of Th1 cells.


Immunology ◽  
2000 ◽  
Vol 99 (1) ◽  
pp. 109-112 ◽  
Author(s):  
K. M. Gillespie ◽  
C.-C. Szeto ◽  
V. M. Betin ◽  
P. W. Mathieson

2000 ◽  
Vol 192 (11) ◽  
pp. 1669-1676 ◽  
Author(s):  
Takako Hirata ◽  
Glenn Merrill-Skoloff ◽  
Melissa Aab ◽  
Jing Yang ◽  
Barbara C. Furie ◽  
...  

P-selectin glycoprotein ligand 1 (PSGL-1) is a sialomucin expressed on leukocytes that mediates neutrophil rolling on the vascular endothelium. Here, the role of PSGL-1 in mediating lymphocyte migration was studied using mice lacking PSGL-1. In a contact hypersensitivity model, the infiltration of CD4+ T lymphocytes into the inflamed skin was reduced in PSGL-1–deficient mice. In vitro–generated T helper (Th)1 cells from PSGL-1–deficient mice did not bind to P-selectin and migrated less efficiently into the inflamed skin than wild-type Th1 cells. To assess the role of PSGL-1 in P- or E-selectin–mediated migration of Th1 cells, the cells were injected into E- or P-selectin–deficient mice. PSGL-1–deficient Th1 cells did not migrate into the inflamed skin of E-selectin–deficient mice, indicating that PSGL-1 on Th1 cells is the sole ligand for P-selectin in vivo. In contrast, PSGL-1–deficient Th1 cells migrated into the inflamed skin of P-selectin–deficient mice, although less efficiently than wild-type Th1 cells. This E-selectin–mediated migration of PSGL-1–deficient or wild-type Th1 cells was not altered by injecting a blocking antibody to L-selectin. These data provide evidence that PSGL-1 on Th1 cells functions as one of the E-selectin ligands in vivo.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2869-2874 ◽  
Author(s):  
Takayuki Yoshimoto ◽  
Chrong-Reen Wang ◽  
Toshihiko Yoneto ◽  
Akio Matsuzawa ◽  
William W. Cruikshank ◽  
...  

Interleukin (IL)-16 is a chemoattractant cytokine for CD4+ leukocytes. Because delayed-type hypersensitivity (DTH) reaction is mediated by T helper 1 (Th1) cells and CD4+ T cells can be chemoattracted by IL-16, we have investigated the involvement of IL-16 in the DTH reaction. Immunohistochemical analysis revealed the IL-16 expression in infiltrating cells and epithelial cells in the DTH footpads. The IL-16 expression was also detected intracellularly in the infiltrating cells. In addition, markedly increased production of IL-16 was detected in the DTH footpad extracts, but not in the control footpad extracts, by an enzyme-linked immunosorbent assay and also by Western blot analysis. The DTH footpad extracts exhibited a strong chemoattractant activity toward splenic T cells, which was significantly inhibited by the inclusion of neutralizing monoclonal antibody (mAb) against IL-16 in the migration assay. Furthermore, treatment of sensitized mice in vivo with the anti-IL-16 neutralizing mAb significantly suppressed the footpad swelling induced by an antigen challenge, together with decreased infiltration of leukocytes including not only CD4+ T cells but also CD8+ T cells and macrophages into the DTH footpads. Decreased production of macrophage inflammatory protein 1 was also observed in the DTH footpad extracts by the mAb treatment. These results suggest that IL-16 plays an important role in the recruitment of leukocytes—presumably including antigen-specific Th1 cells, which secrete cytokines and chemokines mediating the following hypersensitivity reaction after activation by the interaction with Langerhans cells carrying the antigen—for the elicitation of DTH response.


1996 ◽  
Vol 183 (3) ◽  
pp. 901-913 ◽  
Author(s):  
E Murphy ◽  
K Shibuya ◽  
N Hosken ◽  
P Openshaw ◽  
V Maino ◽  
...  

Commitment of T helper 1 (Th1) or Th2 populations developing during an immune response to a pathogen, or an inappropriate immune response to an allergen or autoantigen, may determine the difference between health and chronic disease. We show that strongly polarized Th1 and Th2 populations assessed by immunoassay are heterogeneous using flow cytometry to detect single cells producing interferon gamma (IFN-gamma) and interleukin 4 (IL-4). Th1 populations arising after 1 wk of stimulation in IL-12 plus anti-IL-4 antibodies could convert to Th2 cells when restimulated in IL-4. Th2 populations resulting from stimulation for 1 wk in IL-4 could give rise to Th1 cells upon restimulation in IL-12 plus anti-IL-4. In contrast, the cytokine profiles of long-term Th1 and Th2 populations arising originally from repeated stimulation in IL-12 or IL-4 appeared more homogeneous and were not reversible, although IL-4 dramatically reduced the number of IFN-gamma-producing Th1 cells. This may explain previous reports that Th1 cells can be converted to Th2 cells.


2000 ◽  
Vol 192 (7) ◽  
pp. 977-986 ◽  
Author(s):  
Gregory Z. Tau ◽  
Thierry von der Weid ◽  
Binfeng Lu ◽  
Simone Cowan ◽  
Marina Kvatyuk ◽  
...  

One mechanism regulating the ability of different subsets of T helper (Th) cells to respond to cytokines is the differential expression of cytokine receptors. For example, Th2 cells express both chains of the interferon γ receptor (IFN-γR), whereas Th1 cells do not express the second chain of the IFN-γR (IFN-γR2) and are therefore unresponsive to IFN-γ. To determine whether the regulation of IFN-γR2 expression, and therefore IFN-γ responsiveness, is important for the differentiation of naive CD4+ T cells into Th1 cells or for Th1 effector function, we generated mice in which transgenic (TG) expression of IFN-γR2 is controlled by the CD2 promoter and enhancer. CD4+ T cells from IFN-γR2 TG mice exhibit impaired Th1 polarization potential in vitro. TG mice also display several defects in Th1-dependent immunity in vivo, including attenuated delayed-type hypersensitivity responses and decreased antigen-specific IFN-γ production. In addition, TG mice mount impaired Th1 responses against Leishmania major, as manifested by increased parasitemia and more severe lesions than their wild-type littermates. Together, these data suggest that the sustained expression of IFN-γR2 inhibits Th1 differentiation and function. Therefore, the acquisition of an IFN-γ–unresponsive phenotype in Th1 cells plays a crucial role in the development and function of these cells.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2668-2671 ◽  
Author(s):  
Raffaella Bonecchi ◽  
Silvano Sozzani ◽  
Johnny T. Stine ◽  
Walter Luini ◽  
Giovanna D’Amico ◽  
...  

Macrophage-derived chemokine (MDC) is a CC chemokine that recognizes the CCR4 receptor and is selective for T helper 2 (Th2) versus T helper 1 (Th1) cells. The present study was designed to investigate the effect of the prototypic Th2/Th1 cytokines, interleukin-4 (IL-4) and interferon-γ (IFN-γ), on the production of MDC by human monocytes. IL-4 and IL-13 caused a time-dependent (plateau at 24 hours) and concentration-dependent (EC50 2 and 10 ng/mL, respectively) increase of MDC mRNA levels in monocytes. Increased expression of MDC mRNA was associated with protein release in the supernatant. MDC expression and production induced by IL-4 and IL-13 were inhibited by IFN-γ. IFN-γ also suppressed the constitutive expression of MDC in mature macrophages and dendritic cells. These results delineate an amplification loop of polarized Th2 responses based on differential regulation of MDC production by IL-4 and IL-13 versus IFN-γ and on the selectivity of this chemokine for polarized Th2 cells. © 1998 by The American Society of Hematology.


2016 ◽  
Author(s):  
Jardin A. Leleux ◽  
Pallab Pradhan ◽  
Krishnendu Roy

AbstractIt is currently unknown whether and how mammalian pathogen-recognition receptors (PRR) respond to biophysical patterns of pathogen-associated molecular danger-signals. Using synthetic pathogen-like particles (PLPs) that mimic physical properties of bacteria or large-viruses, we have discovered that the quality and quantity of Toll-like-receptor-9 (TLR9)-signaling by CpG in mouse dendritic cells (mDC) is uniquely dependent on biophysical attributes, specifically the surface-density of CpG and size of the presenting PLP. These physical patterns control DC-programming by regulating kinetics and magnitude of MyD88-IRAK4 signaling, NFκB-driven responses, and STAT3 phosphorylation, which in turn controls differential T cell responses and in vivo immune-polarization, especially T-helper 1 (Th1) versus T-helper 2 (Th2) antibody responses. Our findings suggest that innate immune cells can sense and respond not only to molecular, but also pathogen-associated physical patterns (PAPPs), broadening the tools for modulating immunity, helping to better understand innate response mechanisms to pathogens and develop new and improved vaccines.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2668-2671 ◽  
Author(s):  
Raffaella Bonecchi ◽  
Silvano Sozzani ◽  
Johnny T. Stine ◽  
Walter Luini ◽  
Giovanna D’Amico ◽  
...  

Abstract Macrophage-derived chemokine (MDC) is a CC chemokine that recognizes the CCR4 receptor and is selective for T helper 2 (Th2) versus T helper 1 (Th1) cells. The present study was designed to investigate the effect of the prototypic Th2/Th1 cytokines, interleukin-4 (IL-4) and interferon-γ (IFN-γ), on the production of MDC by human monocytes. IL-4 and IL-13 caused a time-dependent (plateau at 24 hours) and concentration-dependent (EC50 2 and 10 ng/mL, respectively) increase of MDC mRNA levels in monocytes. Increased expression of MDC mRNA was associated with protein release in the supernatant. MDC expression and production induced by IL-4 and IL-13 were inhibited by IFN-γ. IFN-γ also suppressed the constitutive expression of MDC in mature macrophages and dendritic cells. These results delineate an amplification loop of polarized Th2 responses based on differential regulation of MDC production by IL-4 and IL-13 versus IFN-γ and on the selectivity of this chemokine for polarized Th2 cells. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document