pathogen recognition receptors
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 31)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Vol 10 (24) ◽  
pp. 5765
Author(s):  
Pierachille Santus ◽  
Dejan Radovanovic ◽  
Micaela Garziano ◽  
Stefano Pini ◽  
Giuseppe Croce ◽  
...  

Background: The effects of immunomodulators in patients with Coronavirus Disease 2019 (COVID-19) pneumonia are still unknown. We investigated the cellular inflammatory and molecular changes in response to standard-of-care + pidotimod (PDT) and explored the possible association with blood biomarkers of disease severity. Methods: Clinical characteristics and outcomes, neutrophil-to-lymphocyte ratio (NLR), plasma and cell supernatant chemokines, and gene expression patterns after SARS-CoV-2 and influenza (FLU) virus in vitro stimulation were assessed in 16 patients with mild-moderate COVID-19 pneumonia, treated with standard of care and PDT 800 mg twice daily (PDT group), and measured at admission, 7 (T1), and 12 (T2) days after therapy initiation. Clinical outcomes and NLR were compared with age-matched historical controls not exposed to PDT. Results: Hospital stay, in-hospital mortality, and intubation rate did not differ between groups. At T1, NLR was 2.9 (1.7–4.6) in the PDT group and 5.5 (3.4–7.1) in controls (p = 0.037). In the PDT group, eotaxin and IL-4 plasma concentrations progressively increased (p < 0.05). Upon SARS-CoV-2 and FLU-specific stimulation, IFN-γ was upregulated (p < 0.05), while at genetic transcription level, Pathogen Recognition Receptors (TRLs) were upregulated, especially in FLU-stimulated conditions. Conclusions: Immunomodulation exerted by PDT and systemic corticosteroids may foster a restoration in the innate response to the viral infection. These results should be confirmed in larger RCTs.


2021 ◽  
Vol 13 (22) ◽  
pp. 12381
Author(s):  
Peter Olutope Fayemi ◽  
Omolola Esther Fayemi ◽  
Luke Oluwaseye Joel ◽  
Michael Gbenga Ogungbuyi

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a public health emergency that turns the year 2020–2021 into annus horribilis for millions of people across international boundaries. The interspecies transmission of this zoonotic virus and mutated variants are aided by exposure dynamics of infected aerosols, fomites and intermediate reservoirs. The spike in the first, second and third waves of coronavirus confirms that herd immunity is not yet reached and everyone including livestock is still vulnerable to the infection. Of serious concern are the communitarian nature of agrarians in the livestock sector, aerogenous spread of the virus and attendant cytocidal effect in permissive cells following activation of pathogen recognition receptors, replication cycles, virulent mutations, seasonal spike in infection rates, flurry of reinfections and excess mortalities that can affect animal welfare and food security. As the capacity to either resist or be susceptible to infection is influenced by numerous factors, identifying coronavirus-associated variants and correlating exposure dynamics with viral aerosols, spirometry indices, comorbidities, susceptible blood types, cellular miRNA binding sites and multisystem inflammatory syndrome remains a challenge where the lethal zoonotic infections are prevalent in the livestock industry, being the hub of dairy, fur, meat and egg production. This review provides insights into the complexity of the disease burden and recommends precision smart-farming models for upscaling biosecurity measures and adoption of digitalised technologies (robotic drones) powered by multiparametric sensors and radio modem systems for real-time tracking of infectious strains in the agro-environment and managing the transition into the new-normal realities in the livestock industry.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5451
Author(s):  
Ling Wang ◽  
Shunbin Ning

The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.


Author(s):  
Guang Han Ong ◽  
Benedict Shi Xiang Lian ◽  
Takumi Kawasaki ◽  
Taro Kawai

Adjuvants are used to maximize the potency of vaccines by enhancing immune reactions. Components of adjuvants include pathogen-associated molecular patterns (PAMPs) and damage-associate molecular patterns (DAMPs) that are agonists for innate immune receptors. Innate immune responses are usually activated when pathogen recognition receptors (PRRs) recognize PAMPs derived from invading pathogens or DAMPs released by host cells upon tissue damage. Activation of innate immunity by PRR agonists in adjuvants activates acquired immune responses, which is crucial to enhance immune reactions against the targeted pathogen. For example, agonists for Toll-like receptors have yielded promising results as adjuvants, which target PRR as adjuvant candidates. However, a comprehensive understanding of the type of immunological reaction against agonists for PRRs is essential to ensure the safety and reliability of vaccine adjuvants. This review provides an overview of the current progress in development of PRR agonists as vaccine adjuvants, the molecular mechanisms that underlie activation of immune responses, and the enhancement of vaccine efficacy by these potential adjuvant candidates.


2021 ◽  
Author(s):  
Shreya Singh ◽  
Rimjhim Kanaujia ◽  
Shivaprakash M Rudramurthy

Aspergillus species are ubiquitous saprophytes and opportunistic pathogens causing wide spectrum of diseases in humans depending on the host immune status. Following pathogen entry, various soluble bronchopulmonary factors enhance conidial clearance. However, due to virulence factors and poor host immune response Aspergillus conidia bind and damage the airway epithelium. The host immune cells like neutrophils and macrophages recognise Aspergillus spp. through various pathogen recognition receptors and form reactive oxygen species which mediate conidial killing. Neutrophils also attack extracellular hyphae by oxidative attack, non-oxidative granule proteins and neutrophil extracellular traps. In case of adaptive immunity, Th1 cells are crucial sources of IFN-γ mediated protective immunity. The Th17 also display a highly pro-inflammatory which is counterbalanced by a Treg cell. B cells and antibodies also enhance fungal clearance although excessive IgE production may result in atopy. The immune responses are influenced by changes in production of short-chain fatty acids by the gut microbiome which primes cells toward Th2 responses, and this is synchronized by the Innate lymphoid cells. This review provides comprehensive knowledge of various virulence factors of Aspergillus, antifungal host defences including innate and humoral immune response and regulation of host immunity by microbiome.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Milton Tan ◽  
Anthony K Redmond ◽  
Helen Dooley ◽  
Ryo Nozu ◽  
Keiichi Sato ◽  
...  

Chondrichthyes (cartilaginous fishes) are fundamental for understanding vertebrate evolution, yet their genomes are understudied. We report long-read sequencing of the whale shark genome to generate the best gapless chondrichthyan genome assembly yet with higher contig contiguity than all other cartilaginous fish genomes, and studied vertebrate genomic evolution of ancestral gene families, immunity, and gigantism. We found a major increase in gene families at the origin of gnathostomes (jawed vertebrates) independent of their genome duplication. We studied vertebrate pathogen recognition receptors (PRRs), which are key in initiating innate immune defense, and found diverse patterns of gene family evolution, demonstrating that adaptive immunity in gnathostomes did not fully displace germline-encoded PRR innovation. We also discovered a new Toll-like receptor (TLR29) and three NOD1 copies in the whale shark. We found chondrichthyan and giant vertebrate genomes had decreased substitution rates compared to other vertebrates, but gene family expansion rates varied among vertebrate giants, suggesting substitution and expansion rates of gene families are decoupled in vertebrate genomes. Finally, we found gene families that shifted in expansion rate in vertebrate giants were enriched for human cancer-related genes, consistent with gigantism requiring adaptations to suppress cancer.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009781
Author(s):  
Lubov S. Grigoryeva ◽  
Nicholas P. Cianciotto

Cytokines made by macrophages play a critical role in determining the course of Legionella pneumophila infection. Prior murine-based modeling indicated that this cytokine response is initiated upon recognition of L. pneumophila by a subset of Toll-like receptors, namely TLR2, TLR5, and TLR9. Through the use of shRNA/siRNA knockdowns and subsequently CRISPR/Cas9 knockouts (KO), we determined that TRIF, an adaptor downstream of endosomal TLR3 and TLR4, is required for full cytokine secretion by human primary and cell-line macrophages. By characterizing a further set of TLR KO’s in human U937 cells, we discerned that, contrary to the viewpoint garnered from murine-based studies, TLR3 and TLR4 (along with TLR2 and TLR5) are in fact vital to the macrophage response in the early stages of L. pneumophila infection. This conclusion was bolstered by showing that i) chemical inhibitors of TLR3 and TLR4 dampen the cytokine output of primary human macrophages and ii) transfection of TLR3 and TLR4 into HEK cells conferred an ability to sense L. pneumophila. TLR3- and TLR4-dependent cytokines promoted migration of human HL-60 neutrophils across an epithelial layer, pointing to the biological importance for the newfound signaling pathway. The response of U937 cells to L. pneumophila LPS was dependent upon TLR4, a further contradiction to murine-based studies, which had concluded that TLR2 is the receptor for Legionella LPS. Given the role of TLR3 in sensing nucleic acid (i.e., dsRNA), we utilized newly-made KO U937 cells to document that DNA-sensing by cGAS-STING and DNA-PK are also needed for the response of human macrophages to L. pneumophila. Given the lack of attention given them in the bacterial field, C-type lectin receptors were similarly examined; but, they were not required. Overall, this study arguably represents the most extensive, single-characterization of Legionella-recognition receptors within human macrophages.


2021 ◽  
Vol 30 (3) ◽  
pp. 1-8
Author(s):  
Fatma O. Khalil ◽  
Mohammed A. Rady ◽  
Seham A. Eissa ◽  
Azza M. Abd El Aziz

Background: Liver related pathologies including Hepatocellular Carcinoma (HCC) is a universal problem. Innate immunity receptors were accused in the etiopathogenesis of HCC with many conflicts. TLR4 is one of pathogen recognition receptors involved in the pathogenesis of many diseases and malignancies. TLR4 receptor polymorphisms were investigated in HCV related morbidities along with inconclusive results Objectives: to study the role of TLR4 rs 2149356 and rs 1927914 genotypes polymorphisms in HCV related HCC development. Methodology: 200 Chronically infected HCV patients were enrolled in this study. they were divided according to lab and clinical data into 100 CHC group and 100 HCC patients who were compared to health individual. The blood samples obtained were further proceed to full lab and TLR4 genotyping by RFLP-PCR technique Results: GT genotype and T allele of TLR4 rs 2149356 at 95% CI of 0.38 (0.21-0.70) was significantly increased in control group than in HCC and CHC groups. At 0.32(0.17-0.63) TLR4 rs 1927914 C allele and CT genotype was significantly increased in Controls than diseased groups while T allele is significantly increased in HCC than control group. Conclusions: TLR4 genotypes may play a protective role against HCC development among chronic HCV patients.


2021 ◽  
Vol 2 ◽  
Author(s):  
Behnam Keshavarz ◽  
Loren D. Erickson ◽  
Thomas A. E. Platts-Mills ◽  
Jeffrey M. Wilson

Allergic diseases represent a major cause of morbidity in modern industrialized and developing countries. The origins and development of allergic immune responses have proven difficult to unravel and remain an important scientific objective. House dust mites (HDM) and ticks represent two important causes of allergic disease. Investigations into HDM fecal particles and tick bites have revealed insights which have and will continue to shape our understanding of allergic immunity. In the present review, focus is given to the role of innate immunity in shaping the respective responses to HDM and ticks. The HDM fecal particle represents a rich milieu of molecules that can be recognized by pathogen-recognition receptors of the innate immune system. Factors in tick saliva and/or tissue damage resultant from tick feeding are thought to activate innate immune signaling that promotes allergic pathways. Recent evidence indicates that innate sensing involves not only the direct recognition of allergenic agents/organisms, but also indirect sensing of epithelial barrier disruption. Although fecal particles from HDM and bites from ticks represent two distinct causes of sensitization, both involve a complex array of molecules that contribute to an innate response. Identification of specific molecules will inform our understanding of the mechanisms that contribute to allergic immunity, however the key may lie in the combination of molecules delivered to specific sites in the body.


2021 ◽  
Vol 12 ◽  
Author(s):  
Karin Peters ◽  
Marcus Peters

More than fifty c-type lectin receptors (CLR) are known and have been identified so far. Moreover, we know the group of galectins and sialic acid-binding immunoglobulin-type lectins that also belong to the carbohydrate-binding receptors of the immune system. Thus, the lectin receptors form the largest receptor family among the pathogen recognition receptors. Similar to the toll-like receptors (TLRs), the CLR do not only recognize foreign but also endogenous molecules. In contrast to TLRs, which have a predominantly activating effect on the immune system, lectin receptors also mediate inhibitory signals. They play an important role in innate and adaptive immunity for the induction, regulation and shaping of the immune response. The hygiene hypothesis links enhanced infection to protection from allergic disease. Yet, the microbial substances that are responsible for mediating this allergy-protective activity still have to be identified. Microbes contain both ligands binding to TLRs and carbohydrates that are recognized by CLR and other lectin receptors. In the current literature, the CLR are often recognized as the ‘bad guys’ in allergic inflammation, because some glycoepitopes of allergens have been shown to bind to CLR, facilitating their uptake and presentation. On the other hand, there are many reports revealing that sugar moieties are involved in immune regulation. In this review, we will summarize what is known about the role of carbohydrate interaction with c-type lectins and other sugar-recognizing receptors in anti-inflammation, with a special focus on the regulation of the allergic immune response.


Sign in / Sign up

Export Citation Format

Share Document