Role of IL-16 in delayed-type hypersensitivity reaction

Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2869-2874 ◽  
Author(s):  
Takayuki Yoshimoto ◽  
Chrong-Reen Wang ◽  
Toshihiko Yoneto ◽  
Akio Matsuzawa ◽  
William W. Cruikshank ◽  
...  

Interleukin (IL)-16 is a chemoattractant cytokine for CD4+ leukocytes. Because delayed-type hypersensitivity (DTH) reaction is mediated by T helper 1 (Th1) cells and CD4+ T cells can be chemoattracted by IL-16, we have investigated the involvement of IL-16 in the DTH reaction. Immunohistochemical analysis revealed the IL-16 expression in infiltrating cells and epithelial cells in the DTH footpads. The IL-16 expression was also detected intracellularly in the infiltrating cells. In addition, markedly increased production of IL-16 was detected in the DTH footpad extracts, but not in the control footpad extracts, by an enzyme-linked immunosorbent assay and also by Western blot analysis. The DTH footpad extracts exhibited a strong chemoattractant activity toward splenic T cells, which was significantly inhibited by the inclusion of neutralizing monoclonal antibody (mAb) against IL-16 in the migration assay. Furthermore, treatment of sensitized mice in vivo with the anti-IL-16 neutralizing mAb significantly suppressed the footpad swelling induced by an antigen challenge, together with decreased infiltration of leukocytes including not only CD4+ T cells but also CD8+ T cells and macrophages into the DTH footpads. Decreased production of macrophage inflammatory protein 1 was also observed in the DTH footpad extracts by the mAb treatment. These results suggest that IL-16 plays an important role in the recruitment of leukocytes—presumably including antigen-specific Th1 cells, which secrete cytokines and chemokines mediating the following hypersensitivity reaction after activation by the interaction with Langerhans cells carrying the antigen—for the elicitation of DTH response.

1997 ◽  
Vol 185 (12) ◽  
pp. 2133-2141 ◽  
Author(s):  
Elizabeth Ingulli ◽  
Anna Mondino ◽  
Alexander Khoruts ◽  
Marc K. Jenkins

Although lymphoid dendritic cells (DC) are thought to play an essential role in T cell activation, the initial physical interaction between antigen-bearing DC and antigen-specific T cells has never been directly observed in vivo under conditions where the specificity of the responding T cells for the relevant antigen could be unambiguously assessed. We used confocal microscopy to track the in vivo location of fluorescent dye-labeled DC and naive TCR transgenic CD4+ T cells specific for an OVA peptide–I-Ad complex after adoptive transfer into syngeneic recipients. DC that were not exposed to the OVA peptide, homed to the paracortical regions of the lymph nodes but did not interact with the OVA peptide-specific T cells. In contrast, the OVA peptide-specific T cells formed large clusters around paracortical DC that were pulsed in vitro with the OVA peptide before injection. Interactions were also observed between paracortical DC of the recipient and OVA peptide-specific T cells after administration of intact OVA. Injection of OVA peptide-pulsed DC caused the specific T cells to produce IL-2 in vivo, proliferate, and differentiate into effector cells capable of causing a delayed-type hypersensitivity reaction. Surprisingly, by 48 h after injection, OVA peptide-pulsed, but not unpulsed DC disappeared from the lymph nodes of mice that contained the transferred TCR transgenic population. These results demonstrate that antigen-bearing DC directly interact with naive antigen-specific T cells within the T cell–rich regions of lymph nodes. This interaction results in T cell activation and disappearance of the DC.


2000 ◽  
Vol 191 (12) ◽  
pp. 2159-2170 ◽  
Author(s):  
Kevin J. Maloy ◽  
Christoph Burkhart ◽  
Tobias M. Junt ◽  
Bernhard Odermatt ◽  
Annette Oxenius ◽  
...  

To analyze the antiviral protective capacities of CD4+ T helper (Th) cell subsets, we used transgenic T cells expressing an I-Ab–restricted T cell receptor specific for an epitope of vesicular stomatitis virus glycoprotein (VSV-G). After polarization into Th1 or Th2 effectors and adoptive transfer into T cell–deficient recipients, protective capacities were assessed after infection with different types of viruses expressing the VSV-G. Both Th1 and Th2 CD4+ T cells could transfer protection against systemic VSV infection, by stimulating the production of neutralizing immunoglobulin G antibodies. However, only Th1 CD4+ T cells were able to mediate protection against infection with recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G). Similarly, only Th1 CD4+ T cells were able to rapidly eradicate Vacc-IND-G from peripheral organs, to mediate delayed-type hypersensitivity responses against VSV-G and to protect against lethal intranasal infection with VSV. Protective capacity correlated with the ability of Th1 CD4+ T cells to rapidly migrate to peripheral inflammatory sites in vivo and to respond to inflammatory chemokines that were induced after virus infection of peripheral tissues. Therefore, the antiviral protective capacity of a given CD4+ T cell is governed by the effector cytokines it produces and by its migratory capability.


2008 ◽  
Vol 253 (1-2) ◽  
pp. 110-115 ◽  
Author(s):  
Friderike Blumenthal-Barby ◽  
Arnhild Schrage ◽  
Katharina Eulenburg ◽  
Martin Zeitz ◽  
Alf Hamann ◽  
...  

1994 ◽  
Vol 179 (2) ◽  
pp. 447-456 ◽  
Author(s):  
S L Reiner ◽  
S Zheng ◽  
Z E Wang ◽  
L Stowring ◽  
R M Locksley

Leishmania major are intramacrophage parasites whose eradication requires the induction of T helper 1 (Th1) effector cells capable of activating macrophages to a microbicidal state. Interleukin 12 (IL-12) has been recently identified as a macrophage-derived cytokine capable of mediating Th1 effector cell development, and of markedly enhancing interferon gamma (IFN-gamma) production by T cells and natural killer cells. Infection of macrophages in vitro by promastigotes of L. major caused no induction of IL-12 p40 transcripts, whereas stimulation using heat-killed Listeria or bacterial lipopolysaccharide induced readily detectable IL-12 mRNA. Using a competitor construct to quantitate a number of transcripts, a kinetic analysis of cytokine induction during the first few days of infection by L. major was performed. All strains of mice examined, including susceptible BALB/c and resistant C57BL/6, B10.D2, and C3H/HeN, had the appearance of a CD4+ population in the draining lymph nodes that contained transcripts for IL-2, IL-4, and IFN-gamma (and in some cases, IL-10) that peaked 4 d after infection. In resistant mice, the transcripts for IL-2, IL-4, and IL-10 were subsequently downregulated, whereas in susceptible BALB/c mice, these transcripts were only slightly decreased, and IL-4 continued to be reexpressed at high levels. IL-12 transcripts were first detected in vivo by 7 d after infection, consistent with induction by intracellular amastigotes. Challenge of macrophages in vitro confirmed that amastigotes, in contrast to promastigotes, induced IL-12 p40 mRNA. Reexamination of the cytokine mRNA at 4 d revealed expression of IL-13 in all strains analyzed, suggesting that IL-2 and IL-13 may mediate the IL-12-independent production of IFN-gamma during the first days after infection. Leishmania have evolved to avoid inducing IL-12 from host macrophages during transmission from the insect vector, and cause a striking induction of mRNAs for IL-2, IL-4, IL-10, and IL-13 in CD4+ T cells. Each of these activities may favor survival of the organism.


2014 ◽  
Vol 211 (9) ◽  
pp. 1857-1874 ◽  
Author(s):  
Shigeru Tanaka ◽  
Akira Suto ◽  
Taro Iwamoto ◽  
Daisuke Kashiwakuma ◽  
Shin-ichiro Kagami ◽  
...  

Stat3 signaling is essential for the induction of RORγt and subsequent Th17 cell differentiation. However, the downstream targets of Stat3 for RORγt expression remain largely unknown. We show here that a novel isoform of Sox5, named Sox5t, is induced in Th17 cells in a Stat3-dependent manner. In vivo, T cell–specific Sox5-deficient mice exhibit impaired Th17 cell differentiation and are resistant to experimental autoimmune encephalomyelitis and delayed-type hypersensitivity. Retrovirus-mediated induction of Sox5 together with c-Maf induces Th17 cell differentiation even in Stat3-deficient CD4+ T cells but not in RORγt-deficient CD4+ T cells, indicating that Sox5 and c-Maf induce Th17 cell differentiation as downstream effectors of Stat3 and as upstream inducers of RORγt. Moreover, Sox5 physically associates with c-Maf via the HMG domain of Sox5 and DNA-binding domain of c-Maf, and Sox5 together with c-Maf directly activates the promoter of RORγt in CD4+ T cells. Collectively, our results suggest that Sox5 and c-Maf cooperatively induce Th17 cell differentiation via the induction of RORγt as downstream targets of Stat3.


2021 ◽  
Author(s):  
Cory J. Knudson ◽  
Maria Férez ◽  
Pedro Alves-Peixoto ◽  
Dan A. Erkes ◽  
Carolina R. Melo-Silva ◽  
...  

Cytotoxic CD4 T lymphocytes (CD4-CTL) are important in anti-viral immunity. For example, we have previously shown that in mice, CD4-CTL are important to control ectromelia virus (ECTV) infection. How viral infections induce CD4-CTL responses remains incompletely understood. Here we demonstrate that not only ECTV but also vaccinia virus and Lymphocytic Choriomeningitis virus induce CD4-CTL, but that the response to ECTV is stronger. Using ECTV, we also demonstrate that in contrast to CD8-CTL, CD4-CTL differentiation requires constant virus replication and ceases once the virus is controlled. We also show that Major Histocompatibility Complex Class II molecules on CD11c + cells are required for CD4-CTL differentiation and for mousepox resistance. Transcriptional analysis indicated that anti-viral CD4-CTL and non-cytolytic T Helper 1 (Th1) CD4 T cells have similar transcriptional profiles, suggesting that CD4-CTL are terminally differentiated classical Th1 cells. Interestingly, CD4-CTL and classical Th1 cells expressed similar mRNA levels of the transcription factors ThPOK and GATA-3, necessary for CD4 T cell linage commitment; and Runx3, required for CD8 T cell development and effector function. However, at the protein level, CD4-CTL had higher levels of the three transcription factors suggesting that further post-transcriptional regulation is required for CD4-CTL differentiation. Finally, using CRISPR-Cas9 deletion of Runx3 in CD4 T cells, we demonstrate that the development of CD4-CTL but not of classical Th1 CD4 T cells requires Runx3 following ECTV infection. These results further our understanding of the mechanisms of CD4-CTL differentiation during viral infection and the role of post-transcriptionally regulated Runx3 in this process. IMPORTANCE While it is well established that cytotoxic CD4 T cells (CD4-CTL) directly contribute to viral clearance, it remains unclear how CD4-CTL are induced. We now show that CD4-CTL require sustained antigen presentation and are induced by CD11c-expressing antigen presenting cells. Moreover, we show that CD4-CTL are derived from the terminal differentiation of classical T helper 1 (Th1) subset of CD4 cells. Compared to Th1 cells, CD4-CTL upregulate protein levels of the transcription factors ThPOK, Runx3 and GATA-3 post-transcriptionally. Deletion of Runx3 in differentiated CD4 T cells prevents CD4-CTL but not of classical Th1 cells. These results advance our knowledge of how CD4-CTL are induced during viral infection.


Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1218-1227 ◽  
Author(s):  
Xiongfei Xu ◽  
Zhenhong Guo ◽  
Xueyu Jiang ◽  
Yushi Yao ◽  
Qiangguo Gao ◽  
...  

Abstract The heterogeneity and mechanisms for the generation of CD4 memory T (CD4 Tm) cells remain elusive. Distinct subsets of dendritic cells (DCs) have been found to regulate a distinct T-helper (Th)–cell subset differentiation by influencing cytokine cues around CD4 T cells; however, whether and how the regulatory DC subset can regulate Tm-cell differentiation remains unknown. Further, there is no ideal in vitro experimental system with which to mimic the 3 phases of the CD4 T-cell immune response (expansion, contraction, memory generation) and/or to culture CD4 Tm cells for more than a month. By analyzing CD4 T cells programmed by long-term coculture with regulatory DCs, we identified a population of long-lived CD4 T cells with a CD44hiCD62L−CCR7− effector memory phenotype and rapid, preferential secretion of the Th2 cytokines interleukin-4 (IL-4), IL-5, IL-10, and IL-13 after antigenic stimulation. These regulatory DC-programmed Tm cells suppress CD4 T-cell activation and proliferation in vitro via IL-10 and inhibit the delayed-type hypersensitivity response once infused in vivo. We also identify their natural counterpart, which is up-regulated by regulatory DC transfusion and negatively regulates the recall response in vivo. Different from interferon-γ–producing conventional Tm cells, these IL-4–producing CD4 Tm cells act as alternative Tm cells with a regulatory function, suggesting a new way of negative immune regulation by memory T cells.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1404-1412 ◽  
Author(s):  
Hiroyoshi Nishikawa ◽  
Takemasa Tsuji ◽  
Elke Jäger ◽  
Gabriel Briones ◽  
Gerd Ritter ◽  
...  

Abstract Salmonella typhimurium engineered to deliver cancer/testis antigen NY-ESO-1 through type III secretion (S typhimurium–NY-ESO-1) was shown to be an efficient cancer vaccine construct in mice and to stimulate NY-ESO-1–specific CD8+/CD4+ T cells in vitro in patients with cancer with NY-ESO-1 spontaneous immunity. We also showed that individuals without spontaneous immunity to NY-ESO-1 had specific CD4+ T-cell precursors with high avidity to NY-ESO-1 under tight control by CD4+CD25+ regulatory T (Treg) cells. We now found that in healthy donors and patients with melanoma without NY-ESO-1 spontaneous immunity, S typhimurium–NY-ESO-1 elicits CD4+ T helper 1 (Th1) cells in vitro recognizing naturally processed antigen from these high-avidity NY-ESO-1–specific naive precursors. In contrast to peptide stimulation, induction of specific Th1 cells with S typhimurium–NY-ESO-1 did not require in vitro depletion of CD4+CD25+ Treg cells, and this prevailing effect was partially blocked by disruption of interleukin-6 or glucocorticoid-induced TNF receptor (GITR) signals. Furthermore, S typhimurium–induced Th1 cells had higher GITR expression than peptide-induced Th1 cells and were resistant to suppression by CD4+CD25+ Treg cells in a GITR-dependent fashion. We propose that S typhimurium–NY-ESO-1 induces antigen-specific T-cell responses that are resistant to suppression by CD4+CD25+ Treg cells.


2000 ◽  
Vol 192 (7) ◽  
pp. 977-986 ◽  
Author(s):  
Gregory Z. Tau ◽  
Thierry von der Weid ◽  
Binfeng Lu ◽  
Simone Cowan ◽  
Marina Kvatyuk ◽  
...  

One mechanism regulating the ability of different subsets of T helper (Th) cells to respond to cytokines is the differential expression of cytokine receptors. For example, Th2 cells express both chains of the interferon γ receptor (IFN-γR), whereas Th1 cells do not express the second chain of the IFN-γR (IFN-γR2) and are therefore unresponsive to IFN-γ. To determine whether the regulation of IFN-γR2 expression, and therefore IFN-γ responsiveness, is important for the differentiation of naive CD4+ T cells into Th1 cells or for Th1 effector function, we generated mice in which transgenic (TG) expression of IFN-γR2 is controlled by the CD2 promoter and enhancer. CD4+ T cells from IFN-γR2 TG mice exhibit impaired Th1 polarization potential in vitro. TG mice also display several defects in Th1-dependent immunity in vivo, including attenuated delayed-type hypersensitivity responses and decreased antigen-specific IFN-γ production. In addition, TG mice mount impaired Th1 responses against Leishmania major, as manifested by increased parasitemia and more severe lesions than their wild-type littermates. Together, these data suggest that the sustained expression of IFN-γR2 inhibits Th1 differentiation and function. Therefore, the acquisition of an IFN-γ–unresponsive phenotype in Th1 cells plays a crucial role in the development and function of these cells.


Sign in / Sign up

Export Citation Format

Share Document