scholarly journals The c-kit Ligand, Stem Cell Factor, Can Enhance Innate Immunity Through Effects on Mast Cells

1998 ◽  
Vol 188 (12) ◽  
pp. 2343-2348 ◽  
Author(s):  
Marcus Maurer ◽  
Bernd Echtenacher ◽  
Lothar Hültner ◽  
George Kollias ◽  
Daniela N. Männel ◽  
...  

Mast cells are thought to contribute significantly to the pathology and mortality associated with anaphylaxis and other allergic disorders. However, studies using genetically mast cell–deficient WBB6F1-KitW/KitW-v and congenic wild-type (WBB6F1-+/+) mice indicate that mast cells can also promote health, by participating in natural immune responses to bacterial infection. We previously reported that repetitive administration of the c-kit ligand, stem cell factor (SCF), can increase mast cell numbers in normal mice in vivo. In vitro studies have indicated that SCF can also modulate mast cell effector function. We now report that treatment with SCF can significantly improve the survival of normal C57BL/6 mice in a model of acute bacterial peritonitis, cecal ligation and puncture (CLP). Experiments in mast cell–reconstituted WBB6F1-KitW/KitW-v mice indicate that this effect of SCF treatment reflects, at least in part, the actions of SCF on mast cells. Repetitive administration of SCF also can enhance survival in mice that genetically lack tumor necrosis factor (TNF)-α, demonstrating that the ability of SCF treatment to improve survival after CLP does not solely reflect effects of SCF on mast cell– dependent (or –independent) production of TNF-α. These findings identify c-kit and mast cells as potential therapeutic targets for enhancing innate immune responses.

1992 ◽  
Vol 175 (1) ◽  
pp. 245-255 ◽  
Author(s):  
B K Wershil ◽  
M Tsai ◽  
E N Geissler ◽  
K M Zsebo ◽  
S J Galli

Interactions between products of the mouse W locus, which encodes the c-kit tyrosine kinase receptor, and the Sl locus, which encodes a ligand for c-kit receptor, which we have designated stem cell factor (SCF), have a critical role in the development of mast cells. Mice homozygous for mutations at either locus exhibit several phenotypic abnormalities including a virtual absence of mast cells. Moreover, the c-kit ligand SCF can induce the proliferation and maturation of normal mast cells in vitro or in vivo, and also can result in repair of the mast cell deficiency of Sl/Sld mice in vivo. We now report that administration of SCF intradermally in vivo results in dermal mast cell activation and a mast cell-dependent acute inflammatory response. This effect is c-kit receptor dependent, in that it is not observed when SCF is administered to mice containing dermal mast cells expressing functionally inactive c-kit receptors, is observed with both glycosylated and nonglycosylated forms of SCF, and occurs at doses of SCF at least 10-fold lower on a molar basis than the minimally effective dose of the classical dermal mast cell-activating agent substance P. These findings represent the first demonstration in vivo that a c-kit ligand can result in the functional activation of any cellular lineage expressing the c-kit receptor, and suggest that interactions between the c-kit receptor and its ligand may influence mast cell biology through complex effects on proliferation, maturation, and function.


1996 ◽  
Vol 183 (6) ◽  
pp. 2681-2686 ◽  
Author(s):  
J J Costa ◽  
G D Demetri ◽  
T J Harrist ◽  
A M Dvorak ◽  
D F Hayes ◽  
...  

Stem cell factor (SCF), also known as mast cell growth factor, kit ligand, and steel factor, is the ligand for the tyrosine kinase receptor (SCFR) that is encoded by the c-kit proto-oncogene. We analyzed the effects of recombinant human SCF (r-hSCF, 5-50 micrograms/kg/day, injected subcutaneously) on mast cells and melanocytes in a phase I study of 10 patients with advanced breast carcinoma. A wheal and flare reaction developed at each r-hSCF injection site; by electron microscopy, most dermal mast cells at these sites exhibited extensive, anaphylactic-type degranulation. A 14-d course of r-hSCF significantly increased dermal mast cell density at sites distant to those injected with the cytokine and also increased both urinary levels of the major histamine metabolite, methyl-histamine, and serum levels of mast cell alpha-tryptase. Five subjects developed areas of persistent hyperpigmentation at r-hSCF injection sites; by light microscopy, these sites exhibited markedly increased epidermal melanization and increased numbers of melanocytes. The demonstration that r-hSCF can promote both the hyperplasia and the functional activation of human mast cells and melanocytes in vivo has implications for our understanding of the role of endogenous SCF in health and disease. These findings also indicate that the interaction between SCF and its receptor represents a potential therapeutic target for regulating the numbers and functional activity of both mast cells and cutaneous melanocytes.


1991 ◽  
Vol 174 (1) ◽  
pp. 125-131 ◽  
Author(s):  
M Tsai ◽  
L S Shih ◽  
G F Newlands ◽  
T Takeishi ◽  
K E Langley ◽  
...  

Mast cell development is a complex process that results in the appearance of phenotypically distinct populations of mast cells in different anatomical sites. Mice homozygous for mutations at the W or S1 locus exhibit several phenotypic abnormalities, including a virtual absence of mast cells in all organs and tissues. Recent work indicates that W encodes the c-kit tyrosine kinase receptor, whereas S1 encodes a c-kit ligand that we have designated stem cell factor (SCF). Recombinant or purified natural forms of the c-kit ligand induce proliferation of certain mast cell populations in vitro, and injection of recombinant SCF permits mast cells to develop in mast cell-deficient WCB6F1-S1/S1d mice. However, the effects of SCF on mast cell proliferation, maturation, and phenotype in normal mice in vivo were not investigated. We now report that local administration of SCF in vivo promotes the development of connective tissue-type mast cells (CTMC) in the skin of mice and that systemic administration of SCF induces the development of both CTMC and mucosal mast cells (MMC) in rats. Rats treated with SCF also develop significantly increased tissue levels of specific rat mast cell proteases (RMCP) characteristic of either CTMC (RMCP I) or MMC (RMCP II). These findings demonstrate that SCF can induce the expansion of both CTMC and MMC populations in vivo and show that SCF can regulate at least one cellular lineage that expresses c-kit, the mast cell, through complex effects on proliferation and maturation.


Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 2893-2900 ◽  
Author(s):  
Ann M. Dvorak ◽  
John J. Costa ◽  
Ellen S. Morgan ◽  
Rita A. Monahan-Earley ◽  
Stephen J. Galli

AbstractStem cell factor (SCF ) has a major role in hematopoiesis and in the regulation of mast cell development and function. For example, recombinant human SCF (rhSCF ) can induce the development of human mast cells from precursor cells in vitro, stimulate mediator release from human skin mast cells in vitro, and promote both the development and functional activation of human skin mast cells in vivo. In the present study, we used a new ultrastructural enzyme-affinity method, employing diamine oxidase (DAO)-conjugated gold particles (DAO-gold), to detect histamine in skin biopsies obtained from patients with breast carcinomas who were receiving daily subcutaneous (SC) injections of rhSCF in a phase I study of this cytokine. We examined control biopsies obtained at sites remote from rhSCF injection as well as biopsies of rhSCF-injected skin that were obtained within 2 hours and 30 minutes of the SC injection of rhSCF at that site. The rhSCF-injected sites (which clinically exhibited a wheal-and-flare response), but not the control sites, contained mast cells undergoing regulated secretion by granule extrusion. The DAO-gold-affinity method detected histamine in electron-dense granules of mast cells in control and injected skin biopsies; however, the altered matrix of membrane-free, extruded mast cell granules was largely unreactive with DAO-gold. Notably, DAO-gold bound strongly to fibrin deposits and collagen fibers that were adjacent to degranulated mast cells. These findings represent the first morphologic evidence of histamine secretion by classical granule exocytosis in human mast cells in vivo.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1519-1527 ◽  
Author(s):  
G Nilsson ◽  
U Miettinen ◽  
T Ishizaka ◽  
LK Ashman ◽  
AM Irani ◽  
...  

Abstract Although interleukin-4 (IL-4) in mice is known to augment the proliferation of mast cells and to modulate the expression of certain mast cell protease transcripts, its effect on human mast cells is less well understood. The current study examined the effects of recombinant human IL-4 (rhuIL-4) on stem cell factor (SCF)-dependent fetal liver- derived human mast cells in liquid culture. In no case did rhuIL-4 augment proliferation of mast cells. rhuIL-4 selectively inhibited certain aspects of the development of mast cells in cultures of fetal liver cells with rhuSCF. These include lower numbers and percentages of cells expressing tryptase and surface Kit, smaller cells, and lower contents of cells for tryptase, histamine, and Kit. Development of metachromasia was not attenuated. The downregulation of Kit, the surface receptor for SCF, is probably a critical factor, because cells lacking this molecule would not be able to respond to SCF. In contrast to mast cell progenitors, mast cells already developed in vitro from fetal liver cells are relatively resistant to rhuIL-4, but are still dependent for survival on the presence of rhuSCF.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 72-83 ◽  
Author(s):  
DM Haig ◽  
JF Huntley ◽  
A MacKellar ◽  
GF Newlands ◽  
L Inglis ◽  
...  

Abstract The effects of rat stem-cell factor (SCF) and interleukin-3 (IL-3), alone or in combination, on the in vitro growth and serine proteinase expression of rat serosal/connective-tissue mast cells (CTMC) or bone marrow-derived mast cells (BMMC) were examined. Rat SCF stimulated the growth of both CTMC and BMMC. IL-3 stimulated BMMC growth to a lesser extent than did SCF, whereas CTMC numbers did not increase in IL-3. However, SCF and IL-3 had synergistic effects on the growth of both BMMC and CTMC. SCF favoured the maintenance of rat mast cell proteinase- I (RMCP-I) in CTMC, but did not induce detectable production of RMCP-I in BMMC. In contrast, when IL-3 or lymph node-conditioned medium (LNCM) was added to SCF, a subpopulation of CTMC expressed and stored the soluble proteinase RMCP-II. In BMMC, the RMCP-II content of cells maintained in SCF was significantly less than that of cells maintained in IL-3 or LNCM. RMCP-II also appeared in the supernatants of BMMC, especially when BMMC numbers were increasing rapidly in SCF with or without IL-3 or LNCM. Thus, SCF and IL-3 can regulate the growth of rat BMMC and CTMC, as well as influence their production and release of proteinases.


Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1519-1527 ◽  
Author(s):  
G Nilsson ◽  
U Miettinen ◽  
T Ishizaka ◽  
LK Ashman ◽  
AM Irani ◽  
...  

Although interleukin-4 (IL-4) in mice is known to augment the proliferation of mast cells and to modulate the expression of certain mast cell protease transcripts, its effect on human mast cells is less well understood. The current study examined the effects of recombinant human IL-4 (rhuIL-4) on stem cell factor (SCF)-dependent fetal liver- derived human mast cells in liquid culture. In no case did rhuIL-4 augment proliferation of mast cells. rhuIL-4 selectively inhibited certain aspects of the development of mast cells in cultures of fetal liver cells with rhuSCF. These include lower numbers and percentages of cells expressing tryptase and surface Kit, smaller cells, and lower contents of cells for tryptase, histamine, and Kit. Development of metachromasia was not attenuated. The downregulation of Kit, the surface receptor for SCF, is probably a critical factor, because cells lacking this molecule would not be able to respond to SCF. In contrast to mast cell progenitors, mast cells already developed in vitro from fetal liver cells are relatively resistant to rhuIL-4, but are still dependent for survival on the presence of rhuSCF.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 72-83 ◽  
Author(s):  
DM Haig ◽  
JF Huntley ◽  
A MacKellar ◽  
GF Newlands ◽  
L Inglis ◽  
...  

The effects of rat stem-cell factor (SCF) and interleukin-3 (IL-3), alone or in combination, on the in vitro growth and serine proteinase expression of rat serosal/connective-tissue mast cells (CTMC) or bone marrow-derived mast cells (BMMC) were examined. Rat SCF stimulated the growth of both CTMC and BMMC. IL-3 stimulated BMMC growth to a lesser extent than did SCF, whereas CTMC numbers did not increase in IL-3. However, SCF and IL-3 had synergistic effects on the growth of both BMMC and CTMC. SCF favoured the maintenance of rat mast cell proteinase- I (RMCP-I) in CTMC, but did not induce detectable production of RMCP-I in BMMC. In contrast, when IL-3 or lymph node-conditioned medium (LNCM) was added to SCF, a subpopulation of CTMC expressed and stored the soluble proteinase RMCP-II. In BMMC, the RMCP-II content of cells maintained in SCF was significantly less than that of cells maintained in IL-3 or LNCM. RMCP-II also appeared in the supernatants of BMMC, especially when BMMC numbers were increasing rapidly in SCF with or without IL-3 or LNCM. Thus, SCF and IL-3 can regulate the growth of rat BMMC and CTMC, as well as influence their production and release of proteinases.


2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


Sign in / Sign up

Export Citation Format

Share Document