scholarly journals The Envelope Glycoprotein Ectodomains Determine the Efficiency of CD4+ T Lymphocyte Depletion in Simian– Human Immunodeficiency Virus–Infected Macaques

1998 ◽  
Vol 188 (6) ◽  
pp. 1159-1171 ◽  
Author(s):  
Gunilla B. Karlsson ◽  
Matilda Halloran ◽  
Dominik Schenten ◽  
Juliette Lee ◽  
Paul Racz ◽  
...  

CD4+ T lymphocyte depletion in human immunodeficiency virus type 1 (HIV-1)–infected humans underlies the development of acquired immune deficiency syndrome. Using a model in which rhesus macaques were infected with chimeric simian–human immunodeficiency viruses (SHIVs), we show that both the level of viremia and the structure of the HIV-1 envelope glycoprotein ectodomains individually contributed to the efficiency with which CD4+ T lymphocytes were depleted. The envelope glycoproteins of recombinant SHIVs that efficiently caused loss of CD4+ T lymphocytes exhibited increased chemokine receptor binding and membrane-fusing capacity compared with those of less pathogenic viruses. These studies identify the HIV-1 envelope glycoprotein ectodomains as determinants of CD4+ T lymphocyte loss in vivo and provide a foundation for studying pathogenic mechanisms.

1999 ◽  
Vol 73 (2) ◽  
pp. 976-984 ◽  
Author(s):  
Mark Cayabyab ◽  
Gunilla B. Karlsson ◽  
Bijan A. Etemad-Moghadam ◽  
Wolfgang Hofmann ◽  
Tavis Steenbeke ◽  
...  

ABSTRACT In vivo passage of a poorly replicating, nonpathogenic simian-human immunodeficiency virus (SHIV-HXBc2) generated an efficiently replicating virus, KU-1, that caused rapid CD4+T-lymphocyte depletion and AIDS-like illness in monkeys (S. V. Joag, Z. Li, L. Foresman, E. B. Stephens, L.-J. Zhao, I. Adany, D. M. Pinson, H. M. McClure, and O. Narayan, J. Virol. 70:3189–3197, 1996). The env gene of the KU-1 virus was used to create a molecularly cloned virus, SHIV-HXBc2P 3.2, that differed from a nonpathogenic SHIV-HXBc2 virus in only 12 envelope glycoprotein residues. SHIV-HXBc2P 3.2 replicated efficiently and caused rapid and persistent CD4+ T-lymphocyte depletion in inoculated rhesus macaques. Compared with the envelope glycoproteins of the parental SHIV-HXBc2, the SHIV-HXBc2P 3.2 envelope glycoproteins supported more efficient infection of rhesus monkey peripheral blood mononuclear cells. Both the parental SHIV-HXBc2 and the pathogenic SHIV-HXBc2P 3.2 used CXCR4 but none of the other seven transmembrane segment receptors tested as a second receptor. Compared with the parental virus, viruses with the SHIV-HXBc2P 3.2 envelope glycoproteins were more resistant to neutralization by soluble CD4 and antibodies. Thus, changes in the envelope glycoproteins account for the ability of the passaged virus to deplete CD4+ T lymphocytes rapidly and specify increased replicative capacity and resistance to neutralization.


1999 ◽  
Vol 73 (8) ◽  
pp. 6721-6728 ◽  
Author(s):  
Spyros A. Kalams ◽  
Philip J. Goulder ◽  
Amy K. Shea ◽  
Norman G. Jones ◽  
Alicja K. Trocha ◽  
...  

ABSTRACT Therapeutic suppression of human immunodeficiency virus type 1 (HIV-1) replication may help elucidate interactions between the host cellular immune responses and HIV-1 infection. We performed a detailed longitudinal evaluation of two subjects before and after the start of highly active antiretroviral therapy (HAART). Both subjects had evidence of in vivo-activated and memory cytotoxic T-lymphocyte precursor (CTLp) activity against multiple HIV-1 gene products. After the start of therapy, both subjects had declines in the levels of in vivo-activated HIV-1-specific CTLs and had immediate increases in circulating HIV-1-specific CTL memory cells. With continued therapy, and continued suppression of viral load, levels of memory CTLps declined. HLA A*0201 peptide tetramer staining demonstrated that declining levels of in vivo-activated CTL activity were associated with a decrease in the expression of the CD38+ activation marker. Transient increases in viral load during continued therapy were associated with increases in the levels of virus-specific CTLps in both individuals. The results were confirmed by measuring CTL responses to discrete optimal epitopes. These studies illustrate the dynamic equilibrium between the host immune response and levels of viral antigen burden and suggest that efforts to augment HIV-1-specific immune responses in subjects on HAART may decrease the incidence of virologic relapse.


2001 ◽  
Vol 75 (12) ◽  
pp. 5646-5655 ◽  
Author(s):  
Bijan Etemad-Moghadam ◽  
Daniela Rhone ◽  
Tavis Steenbeke ◽  
Ying Sun ◽  
Judith Manola ◽  
...  

ABSTRACT The mechanism of the progressive loss of CD4+ T lymphocytes, which underlies the development of AIDS in human immunodeficiency virus (HIV-1)-infected individuals, is unknown. Animal models, such as the infection of Old World monkeys by simian-human immunodeficiency virus (SHIV) chimerae, can assist studies of HIV-1 pathogenesis. Serial in vivo passage of the nonpathogenic SHIV-89.6 generated a virus, SHIV-89.6P, that causes rapid depletion of CD4+ T lymphocytes and AIDS-like illness in monkeys. SHIV-KB9, a molecularly cloned virus derived from SHIV-89.6P, also caused CD4+ T-cell decline and AIDS in inoculated monkeys. It has been demonstrated that changes in the envelope glycoproteins of SHIV-89.6 and SHIV-KB9 determine the degree of CD4+ T-cell loss that accompanies a given level of virus replication in the host animals (G. B. Karlsson et. al., J. Exp. Med. 188:1159–1171, 1998). The envelope glycoproteins of the pathogenic SHIV mediated membrane fusion more efficiently than those of the parental, nonpathogenic virus. Here we show that the minimal envelope glycoprotein region that specifies this increase in membrane-fusing capacity is sufficient to convert SHIV-89.6 into a virus that causes profound CD4+ T-lymphocyte depletion in monkeys. We also studied two single amino acid changes that decrease the membrane-fusing ability of the SHIV-KB9 envelope glycoproteins by different mechanisms. Each of these changes attenuated the CD4+ T-cell destruction that accompanied a given level of virus replication in SHIV-infected monkeys. Thus, the ability of the HIV-1 envelope glycoproteins to fuse membranes, which has been implicated in the induction of viral cytopathic effects in vitro, contributes to the capacity of the pathogenic SHIV to deplete CD4+ T lymphocytes in vivo.


2005 ◽  
Vol 79 (7) ◽  
pp. 4289-4297 ◽  
Author(s):  
F. Javier Ibarrondo ◽  
Peter A. Anton ◽  
Marie Fuerst ◽  
Hwee L. Ng ◽  
Johnson T. Wong ◽  
...  

ABSTRACT Gut-associated lymphoid tissue is the major reservoir of lymphocytes and human immunodeficiency virus type 1 (HIV-1) replication in vivo, yet little is known about HIV-1-specific CD8+ T-lymphocyte (CTL) responses in this compartment. Here we assessed the breadth and magnitude of HIV-1-specific CTL in the peripheral blood and sigmoid colon mucosa of infected subjects not on antiretroviral therapy by enzyme-linked immunospot analysis with 53 peptide pools spanning all viral proteins. Comparisons of blood and mucosal CTL revealed that the magnitude of pool-specific responses is correlated within each individual (mean r 2 = 0.82 ± 0.04) and across all individuals (r 2 = 0.75; P < 0.001). Overall, 85.1% of screened peptide pools yielded concordant negative or positive results between compartments. CTL targeting was also closely related between blood and mucosa, with Nef being the most highly targeted (mean of 2.4 spot-forming cells [SFC[/106 CD8+ T lymphocytes/amino acid [SFC/CD8/aa]), followed by Gag (1.5 SFC/CD8/aa). Finally, comparisons of peptide pool responses seen in both blood and mucosa (concordant positives) versus those seen only in one but not the other (discordant positives) showed that most discordant results were likely an artifact of responses being near the limit of detection. Overall, these results indicate that HIV-1-specific CTL responses in the blood mirror those seen in the mucosal compartment in natural chronic infection. For protective or immunotherapeutic vaccination, it will be important to determine whether immunity is elicited in the mucosa, which is a key site of initial infection and subsequent HIV-1 replication in vivo.


2000 ◽  
Vol 74 (14) ◽  
pp. 6501-6510 ◽  
Author(s):  
Zhiwei Chen ◽  
Yaoxing Huang ◽  
Xiuqing Zhao ◽  
Eva Skulsky ◽  
Dorothy Lin ◽  
...  

ABSTRACT The increasing prevalence of human immunodeficiency virus type 1 (HIV-1) subtype C infection worldwide calls for efforts to develop a relevant animal model for evaluating strategies against the transmission of the virus. A chimeric simian/human immunodeficiency virus (SHIV), SHIVCHN19, was generated with a primary, non-syncytium-inducing HIV-1 subtype C envelope from a Chinese strain in the background of SHIV33. Unlike R5-tropic SHIV162, SHIVCHN19 was not found to replicate in rhesus CD4+ T lymphocytes. SHIVCHN19 does, however, replicate in CD4+ T lymphocytes of pig-tailed macaques (Macaca nemestrina). The observed replication competence of SHIVCHN19 requires the fulltat/rev genes and partial gp41 region derived from SHIV33. To evaluate in vivo infectivity, SHIVCHN19 was intravenously inoculated, at first, into two pig-tailed and two rhesus macaques. Although all four animals became infected, the virus replicated preferentially in pig-tailed macaques with an earlier plasma viral peak and a faster seroconversion. To determine whether in vivo adaptation would enhance the infectivity of SHIVCHN19, passages were carried out serially in three groups of two pig-tailed macaques each, via intravenous blood-bone marrow transfusion. The passages greatly enhanced the infectivity of the virus as shown by the increasingly elevated viral loads during acute infection in animals with each passage. Moreover, the doubling time of plasma virus during acute infection became much shorter in passage 4 (P4) animals (0.2 day) in comparison to P1 animals (1 to 2 days). P2 to P4 animals all became seropositive around 2 to 3 weeks postinoculation and had a decline in CD4/CD8 T-cell ratio during the early phase of infection. In P4 animals, a profound depletion of CD4 T cells in the lamina propria of the jejunum was observed. Persistent plasma viremia has been found in most of the infected animals with sustained viral loads ranging from 103 to 105per ml up to 6 months postinfection. Serial passages did not change the viral phenotype as confirmed by the persistence of the R5 tropism of SHIVCHN19 isolated from P4 animals. In addition, the infectivity of SHIVCHN19 in rhesus peripheral blood mononuclear cells was also increased after in vivo passages. Our data indicate that SHIVCHN19 has adapted well to grow in macaque cells. This established R5-tropic SHIVCHN19/macaque model would be very useful for HIV-1 subtype C vaccine and pathogenesis studies.


2005 ◽  
Vol 79 (21) ◽  
pp. 13759-13768 ◽  
Author(s):  
Candice C. Clay ◽  
Denise S. Rodrigues ◽  
Danielle J. Harvey ◽  
Christian M. Leutenegger ◽  
Ursula Esser

ABSTRACT To define the possible impact of T-lymphocyte trafficking parameters on simian immunodeficiency virus (SIV) pathogenesis, we examined migratory profiles of carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled T lymphocytes in acutely SIVmac251-infected and uninfected macaques within 48 h after autologous transfer. Despite significant upregulation of homeostatic chemokine CCL19/macrophage inflammatory protein 3β and proinflammatory chemokine CXCL9/monokine induced by gamma interferon in secondary lymphoid tissue in SIV infection, no differences in CFSE+ T-lymphocyte frequencies or cell compartmentalization in lymph nodes were identified between animal groups. By contrast, a higher frequency of CFSE+ T lymphocytes in the small intestine was detected in acute SIV infection. This result correlated with increased numbers of gut CD4 T lymphocytes expressing chemokine receptors CCR9, CCR7, and CXCR3 and high levels of their respective chemokine ligands in the small intestine. The changes in trafficking parameters in SIV-infected macaques occurred concomitantly with acute gut CD4 T-lymphocyte depletion. Here, we present the first in vivo T-lymphocyte trafficking study in SIV infection and a novel approach to delineate T-lymphocyte recruitment into tissues in the nonhuman primate animal model for AIDS. Such studies are likely to provide unique insights into T-lymphocyte sequestration in distinct tissue compartments and possible mechanisms of CD4 T-lymphocyte depletion and immune dysfunction in simian AIDS.


AIDS ◽  
1998 ◽  
Vol 12 (5) ◽  
pp. F15-F22 ◽  
Author(s):  
Petra Mooij ◽  
Mike van der Kolk ◽  
Willy M.J.M. Bogers ◽  
Peter J.F. ten Haaft ◽  
Peter Van Der Meide ◽  
...  

2010 ◽  
Vol 84 (18) ◽  
pp. 9086-9095 ◽  
Author(s):  
Christopher Sundling ◽  
Sijy O'Dell ◽  
Iyadh Douagi ◽  
Mattias N. Forsell ◽  
Andreas Mörner ◽  
...  

ABSTRACT We recently reported that rhesus macaques inoculated with CD4-binding-competent and CD4-binding-defective soluble YU2-derived HIV-1 envelope glycoprotein (Env) trimers in adjuvant generate comparable levels of Env-specific binding antibodies (Abs) and T cell responses. We also showed that Abs directed against the Env coreceptor binding site (CoRbs) were elicited only in animals immunized with CD4-binding-competent trimers and not in animals immunized with CD4-binding-defective trimers, indicating that a direct interaction between Env and CD4 occurs in vivo. To investigate both the overall consequences of in vivo Env-CD4 interactions and the elicitation of CoRbs-directed Abs for protection against heterologous simian-human immunodeficiency virus (SHIV) challenge, we exposed rhesus macaques immunized with CD4-binding-competent and CD4-binding-defective trimers to the CCR5-tropic SHIV-SF162P4 challenge virus. Compared to unvaccinated controls, all vaccinated animals displayed improved control of plasma viremia, independent of the presence or absence of CoRbs-directed Abs prior to challenge. Immunization resulted in plasma responses that neutralized the heterologous SHIV challenge stock in vitro, with similar neutralizing Ab titers elicited by the CD4-binding-competent and CD4-binding-defective trimers. The neutralizing responses against both the SHIV-SF162P4 stock and a recombinant virus pseudotyped with a cloned SHIV-SF162P4-derived Env were significantly boosted by the SHIV challenge. Collectively, these results suggest that the capacity of soluble Env trimers to interact with primate CD4 in vivo and to stimulate the production of moderate titers of CoRbs-directed Abs did not influence the magnitude of the neutralizing Ab recall response after viral challenge or the subsequent control of viremia in this heterologous SHIV challenge model.


2008 ◽  
Vol 82 (16) ◽  
pp. 7886-7896 ◽  
Author(s):  
Thijs van Montfort ◽  
Adri A. M. Thomas ◽  
Georgios Pollakis ◽  
William A. Paxton

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4+ T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.


1998 ◽  
Vol 72 (6) ◽  
pp. 5035-5045 ◽  
Author(s):  
Linqi Zhang ◽  
Tian He ◽  
Andrew Talal ◽  
Gloria Wang ◽  
Sarah S. Frankel ◽  
...  

ABSTRACT We have evaluated the in vivo distribution of the major human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) coreceptors, CXCR4, CCR3, and CCR5, in both rhesus macaques and humans. T lymphocytes and macrophages in both lymphoid and nonlymphoid tissues are the major cell populations expressing HIV/SIV coreceptors, reaffirming that these cells are the major targets of HIV/SIV infection in vivo. In lymphoid tissues such as the lymph node and the thymus, approximately 1 to 10% of the T lymphocytes and macrophages are coreceptor positive. However, coreceptor expression was not detected on follicular dendritic cells (FDC) in lymph nodes, suggesting that the ability of FDC to trap extracellular virions is unlikely to be mediated by a coreceptor-specific mechanism. In the thymus, a large number of immature and mature T lymphocytes express CXCR4, which may render these cells susceptible to infection by syncytium-inducing viral variants that use this coreceptor for entry. In addition, various degrees of coreceptor expression are found among different tissues and also among different cells within the same tissues. Coreceptor-positive cells are more frequently identified in the colon than in the rectum and more frequently identified in the cervix than in the vagina, suggesting that the expression levels of coreceptors are differentially regulated at different anatomic sites. Furthermore, extremely high levels of CXCR4 and CCR3 expression are found on the neurons from both the central and peripheral nervous systems. These findings may be helpful in understanding certain aspects of HIV and SIV pathogenesis and transmission.


Sign in / Sign up

Export Citation Format

Share Document