scholarly journals Homeostasis-Stimulated Proliferation Drives Naive T Cells to Differentiate Directly into Memory T Cells

2000 ◽  
Vol 192 (4) ◽  
pp. 549-556 ◽  
Author(s):  
Bryan K. Cho ◽  
Varada P. Rao ◽  
Qing Ge ◽  
Herman N. Eisen ◽  
Jianzhu Chen

The developmental requirements for immunological memory, a central feature of adaptive immune responses, is largely obscure. We show that as naive CD8 T cells undergo homeostasis-driven proliferation in lymphopenic mice in the absence of overt antigenic stimulation, they progressively acquire phenotypic and functional characteristics of antigen-induced memory CD8 T cells. Thus, the homeostasis-induced memory CD8 T cells express typical memory cell markers, lyse target cells directly in vitro and in vivo, respond to lower doses of antigen than naive cells, and secrete interferon γ faster upon restimulation. Like antigen-induced memory T cell differentiation, the homeostasis-driven process requires T cell proliferation and, initially, the presence of appropriate restricting major histocompatibility complexes, but it differs by occurring without effector cell formation and without requiring interleukin 2 or costimulation via CD28. These findings define repetitive cell division plus T cell receptor ligation as the basic requirements for naive to memory T cell differentiation.

2017 ◽  
Vol 199 (12) ◽  
pp. 4091-4102 ◽  
Author(s):  
Nina Chi Sabins ◽  
Olesya Chornoguz ◽  
Karen Leander ◽  
Fred Kaplan ◽  
Richard Carter ◽  
...  

2018 ◽  
Vol 215 (9) ◽  
pp. 2429-2443 ◽  
Author(s):  
Mark D. Singh ◽  
Minjian Ni ◽  
Jenna M. Sullivan ◽  
Jessica A. Hamerman ◽  
Daniel J. Campbell

CD8+ T cells respond to signals via the T cell receptor (TCR), costimulatory molecules, and immunoregulatory cytokines by developing into diverse populations of effector and memory cells. The relative strength of phosphoinositide 3-kinase (PI3K) signaling early in the T cell response can dramatically influence downstream effector and memory T cell differentiation. We show that initial PI3K signaling during T cell activation results in up-regulation of the signaling scaffold B cell adaptor for PI3K (BCAP), which further potentiates PI3K signaling and promotes the accumulation of CD8+ T cells with a terminally differentiated effector phenotype. Accordingly, BCAP-deficient CD8+ T cells have attenuated clonal expansion and altered effector and memory T cell development following infection with Listeria monocytogenes. Thus, induction of BCAP serves as a positive feedback circuit to enhance PI3K signaling in activated CD8+ T cells, thereby acting as a molecular checkpoint regulating effector and memory T cell development.


2010 ◽  
Vol 89 (2) ◽  
pp. 322-325 ◽  
Author(s):  
Julie Leignadier ◽  
Julie Rooney ◽  
Jean‐François Daudelin ◽  
Nathalie Labrecque

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2662-2662
Author(s):  
Arnob Banerjee ◽  
Scott M. Gordon ◽  
Andrew M. Intlekofer ◽  
E. John Wherry ◽  
Steven L. Reiner

Abstract Abstract 2662 Poster Board II-638 The differentiation of central memory CD8+ T cells after vaccination or primary pathogen encounter is critical for the establishment of long-lasting protection against pathogens including intracellular infectious organisms and malignancies. Unfortunately, the mechanisms of immune memory establishment are unclear, preventing the development of effective vaccines to many emerging pathogens. Naïve CD8+ T cells responding to intracellular pathogens undergo rounds of cell division and progressive differentiation to give rise to terminally differentiated effector cells and memory cells to provide acute and long-lasting immunity, respectively. T-bet and Eomesodermin (Eomes), key transcription factors in this differentiation, share significant DNA binding domain sequence and functional homology, although their distinct expression patterns and non-DNA binding domains suggest potential non-redundant functions. T-bet drives effector and effector-memory differentiation, suppressing the formation of long-lasting central memory CD8+ T cells. We now show that CD8+ T cells responding to acute infection with the lymphocytic choriomeningitis virus (LCMV) display significant heterogeneity in the relative expression levels of T-bet and Eomes on a single cell level. Using mice with a tissue specific deletion of Eomes in T cells, we show defective central-memory differentiation in CD8+ T cells lacking Eomes after infection with LCMV. We observe defects in both long-term persistence and re-expansion on re-challenge, two defining characteristics of central-memory T cells, in memory CD8+ T cells lacking Eomes. These results demonstrate that, in direct contrast to T-bet, Eomes promotes central-memory CD8+ T cell differentiation. Thus, the balance of T-bet and Eomes expression may determine the propensity for CD8+ T cell terminal effector differentation versus long-lived memory differentiation. Our findings demonstrate a crucial role for Eomes in the differentiation of pathogen specific central memory CD8+ T cells which can provide life-long immune protection. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A696-A696
Author(s):  
Teresa Manzo ◽  
Carina Nava Lauveson ◽  
Teresa Maria Frasconi ◽  
Silvia Tiberti ◽  
Ignazio Caruana ◽  
...  

BackgroundAdoptive cell therapy (ACT) harnesses the immune system to recognise tumor cells and carry out an anti-tumor function. However, metabolic constraints imposed by the tumour microenvironment (TME) suppress anti-tumor responses of CTL by reshaping their metabolism and epigenetic landscape. We have recently demonstrated that progressive accumulation of specific long-chain fatty acids (LCFAs) impair mitochondrial function and drives CD8+ T cell dysfunction. In this scenario, maintaining T cells in a less-differentiated state and with high metabolic plasticity during ex vivo T cell production and after infusion may have a strong therapeutic impact. Here, we propose a novel strategy to boost ACT efficacy by implementing T cell long-term functionality, metabolic fitness and preventing exhaustion through lipid-induced mitochondrial rewiring.MethodsWe screen different LCFAs and assess their ability to shape CD8+ T cell differentiation using multi-parametric flow cytometry, proliferation and cytotoxic assays, together with a complete transcriptomic and epigenomic profiling. Metabolic reprogramming of lipid-treated CD8+ T cell was examined by bioenergetic flux measurements paired with metabolomic and lipidomic analysis. Finally, the anti-tumor responses of lipid-instructed CD8 T cells was evaluated in a melanoma mouse model, known to poorly respond to immunotherapy.ResultsLCFAs-treated CD8+ T cells are endowed with highly effector and cytotoxic features but still retaining a memory-like phenotype with decreased PD1 protein levels. Consistently, analysis of the bioenergetic profile and mitochondrial activity has shown that LCFA-instructed CD8+ T cells display a greater mitochondrial fitness. Thus, in vitro LCFA-instructed CD8+ T cells are characterized by higher mitochondrial fitness, potent functionality, memory-like phenotype and PD-1 down-regulation, overall evoking the ideal T cell population associated with a productive anti-tumor response. The therapeutic potential of CD8 T cells lipid-induced metabolic rewiring was further confirmed in vivo. ACT performed with LCFA-reprogrammed CD8 T cells induces higher frequency of memory T cells, which show high polyfunctionality and mitochondrial function, decreased PD1 expression, ultimately resulting in improved tumor control. In addition, LCFA-induced metabolic rewiring during manufacturing of human CAR-redirected T cells, generated a CD8+ T cell memory-like population with higher mitochondrial fitness coupled with a much potent cytotoxic activity.ConclusionsThese results suggest that LCFAs dictate the fate of CD8+ T cell differentiation and could be considered as a molecular switch to fine-tune memory T cell formation and metabolic fitness maintenance, linking lipid metabolism to anti-tumor surveillance. This will be of fundamental importance for a new generation of adoptive T cell-based therapies.Ethics ApprovalThe experiments described were performed in accordance with the European Union Guideline on Animal Experiments and mouse protocols were approved by Italian Ministry of Health and the IEO Committee.


2018 ◽  
Vol 115 (18) ◽  
pp. 4749-4754 ◽  
Author(s):  
Eunseon Ahn ◽  
Koichi Araki ◽  
Masao Hashimoto ◽  
Weiyan Li ◽  
James L. Riley ◽  
...  

PD-1 (programmed cell death-1) is the central inhibitory receptor regulating CD8 T cell exhaustion during chronic viral infection and cancer. Interestingly, PD-1 is also expressed transiently by activated CD8 T cells during acute viral infection, but the role of PD-1 in modulating T cell effector differentiation and function is not well defined. To address this question, we examined the expression kinetics and role of PD-1 during acute lymphocytic choriomeningitis virus (LCMV) infection of mice. PD-1 was rapidly up-regulated in vivo upon activation of naive virus-specific CD8 T cells within 24 h after LCMV infection and in less than 4 h after peptide injection, well before any cell division had occurred. This rapid PD-1 expression by CD8 T cells was driven predominantly by antigen receptor signaling since infection with a LCMV strain with a mutation in the CD8 T cell epitope did not result in the increase of PD-1 on antigen-specific CD8 T cells. Blockade of the PD-1 pathway using anti–PD-L1 or anti–PD-1 antibodies during the early phase of acute LCMV infection increased mTOR signaling and granzyme B expression in virus-specific CD8 T cells and resulted in faster clearance of the infection. These results show that PD-1 plays an inhibitory role during the naive-to-effector CD8 T cell transition and that the PD-1 pathway can also be modulated at this stage of T cell differentiation. These findings have implications for developing therapeutic vaccination strategies in combination with PD-1 blockade.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 578-578 ◽  
Author(s):  
Marie Bleakley ◽  
Audrey Mollerup ◽  
Colette Chaney ◽  
Michele Brown ◽  
Stanley R. Riddell

Abstract Graft versus host disease (GVHD) after allogeneic stem cell transplant (SCT) is initiated by the activation of alloreactive T cells by host dendritic cells (DC) in lymphoid tissue. Studies in murine models have demonstrated that selective depletion of naïve T cells abrogates GVHD in major and minor histocompatibility antigen (miH) mismatched SCT and provides for rapid reconstitution of memory T cell responses to pathogens. This suggests the memory subset may lack a sufficient repertoire of alloreactive T cells or fail to localize to sites where GVHD is initiated. If such a strategy were effective in humans, morbidity from GVHD would be reduced, but the graft versus leukemia (GVL) effect might be compromised. To explore the potential of this approach in humans, we developed a novel limiting dilution assay using DC as stimulator cells in vitro to analyze the frequency and repertoire of human miH reactive T cells in highly purified naïve and memory T cell subsets obtained from HLA identical volunteer donor pairs. For each pair, mature DC were derived by differentiation of CD14+ monocytes in vitro from one volunteer, and pure (>97%) populations of naïve (CD62L+, CD45 RA+, CD45RO-) and memory (CD45RO+) CD8 T cells were obtained by FACS sorting of CD8 enriched PBMC from the respective HLA identical sibling. Memory and naïve T cells were cultured for 12 days in 96 well plates at a range of concentrations with DC at a 30:1 ratio and IL12 (10 ng/ml), and IL15 (10 ng/ml) was added on day 7. On day 12, the wells were screened against target cells from each volunteer in a chromium release assay (CRA) to quantitative T cells with reactivity against miH. All wells with reactivity in this screening assay were subsequently expanded using anti CD3 antibody and IL2 and retested by CRA to validate the results of the screening assay. In multiple experiments using different HLA matched pairs, T cells with specific and reproducible cytotoxic activity (>15% lysis) against target cells from the DC donor but not autologous targets were only isolated from wells plated with naïve CD8 T cells, and there was no reproducible cytotoxicity from wells plated with memory T cells. This data demonstrates that miH specific CD8 T cells are found predominantly, and possibly exclusively, in the naïve T cell subset in humans. This data is consistent with a dramatically reduced repertoire of miH alloreactive T cells in the memory T cell pool and supports the development of protocols to prevent GVHD by selective depletion of CD45RA+ CD8+ T cells from the hematopoietic cell graft. However, T cells specific for miH also contribute to the GVL effect and CD45RA depletion would be expected to compromise antileukemic activity. Using the above approach for isolating miH specific CTL from naïve CD8 T cells, we have found a diverse repertoire of alloreactivity in most cultures and identified a subset of T cell lines and clones specific for miH presented selectively on hematopoietic cells. These T cells recognize primary ALL and AML samples that express the restricting HLA allele in vitro. MiH specific T cell clones can be reliably generated by this method using DC derived from monocytes of patients with advanced leukemia. Thus, it may be feasible to utilize this approach to isolate T cells specific for hematopoietic restricted miH for adoptive therapy as an adjunct to CD45RA depletion to preserve the GVL effect and allow separation of GVL from GVHD.


2021 ◽  
Vol 218 (8) ◽  
Author(s):  
J. Justin Milner ◽  
Clara Toma ◽  
Sara Quon ◽  
Kyla Omilusik ◽  
Nicole E. Scharping ◽  
...  

In response to infection, pathogen-specific CD8 T cells differentiate into functionally diverse effector and memory T cell populations critical for resolving disease and providing durable immunity. Through small-molecule inhibition, RNAi studies, and induced genetic deletion, we reveal an essential role for the chromatin modifier and BET family member BRD4 in supporting the differentiation and maintenance of terminally fated effector CD8 T cells during infection. BRD4 bound diverse regulatory regions critical to effector T cell differentiation and controlled transcriptional activity of terminal effector–specific super-enhancers in vivo. Consequentially, induced deletion of Brd4 or small molecule–mediated BET inhibition impaired maintenance of a terminal effector T cell phenotype. BRD4 was also required for terminal differentiation of CD8 T cells in the tumor microenvironment in murine models, which we show has implications for immunotherapies. Taken together, these data reveal an unappreciated requirement for BRD4 in coordinating activity of cis regulatory elements to control CD8 T cell fate and lineage stability.


Sign in / Sign up

Export Citation Format

Share Document