scholarly journals Bromodomain protein BRD4 directs and sustains CD8 T cell differentiation during infection

2021 ◽  
Vol 218 (8) ◽  
Author(s):  
J. Justin Milner ◽  
Clara Toma ◽  
Sara Quon ◽  
Kyla Omilusik ◽  
Nicole E. Scharping ◽  
...  

In response to infection, pathogen-specific CD8 T cells differentiate into functionally diverse effector and memory T cell populations critical for resolving disease and providing durable immunity. Through small-molecule inhibition, RNAi studies, and induced genetic deletion, we reveal an essential role for the chromatin modifier and BET family member BRD4 in supporting the differentiation and maintenance of terminally fated effector CD8 T cells during infection. BRD4 bound diverse regulatory regions critical to effector T cell differentiation and controlled transcriptional activity of terminal effector–specific super-enhancers in vivo. Consequentially, induced deletion of Brd4 or small molecule–mediated BET inhibition impaired maintenance of a terminal effector T cell phenotype. BRD4 was also required for terminal differentiation of CD8 T cells in the tumor microenvironment in murine models, which we show has implications for immunotherapies. Taken together, these data reveal an unappreciated requirement for BRD4 in coordinating activity of cis regulatory elements to control CD8 T cell fate and lineage stability.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A696-A696
Author(s):  
Teresa Manzo ◽  
Carina Nava Lauveson ◽  
Teresa Maria Frasconi ◽  
Silvia Tiberti ◽  
Ignazio Caruana ◽  
...  

BackgroundAdoptive cell therapy (ACT) harnesses the immune system to recognise tumor cells and carry out an anti-tumor function. However, metabolic constraints imposed by the tumour microenvironment (TME) suppress anti-tumor responses of CTL by reshaping their metabolism and epigenetic landscape. We have recently demonstrated that progressive accumulation of specific long-chain fatty acids (LCFAs) impair mitochondrial function and drives CD8+ T cell dysfunction. In this scenario, maintaining T cells in a less-differentiated state and with high metabolic plasticity during ex vivo T cell production and after infusion may have a strong therapeutic impact. Here, we propose a novel strategy to boost ACT efficacy by implementing T cell long-term functionality, metabolic fitness and preventing exhaustion through lipid-induced mitochondrial rewiring.MethodsWe screen different LCFAs and assess their ability to shape CD8+ T cell differentiation using multi-parametric flow cytometry, proliferation and cytotoxic assays, together with a complete transcriptomic and epigenomic profiling. Metabolic reprogramming of lipid-treated CD8+ T cell was examined by bioenergetic flux measurements paired with metabolomic and lipidomic analysis. Finally, the anti-tumor responses of lipid-instructed CD8 T cells was evaluated in a melanoma mouse model, known to poorly respond to immunotherapy.ResultsLCFAs-treated CD8+ T cells are endowed with highly effector and cytotoxic features but still retaining a memory-like phenotype with decreased PD1 protein levels. Consistently, analysis of the bioenergetic profile and mitochondrial activity has shown that LCFA-instructed CD8+ T cells display a greater mitochondrial fitness. Thus, in vitro LCFA-instructed CD8+ T cells are characterized by higher mitochondrial fitness, potent functionality, memory-like phenotype and PD-1 down-regulation, overall evoking the ideal T cell population associated with a productive anti-tumor response. The therapeutic potential of CD8 T cells lipid-induced metabolic rewiring was further confirmed in vivo. ACT performed with LCFA-reprogrammed CD8 T cells induces higher frequency of memory T cells, which show high polyfunctionality and mitochondrial function, decreased PD1 expression, ultimately resulting in improved tumor control. In addition, LCFA-induced metabolic rewiring during manufacturing of human CAR-redirected T cells, generated a CD8+ T cell memory-like population with higher mitochondrial fitness coupled with a much potent cytotoxic activity.ConclusionsThese results suggest that LCFAs dictate the fate of CD8+ T cell differentiation and could be considered as a molecular switch to fine-tune memory T cell formation and metabolic fitness maintenance, linking lipid metabolism to anti-tumor surveillance. This will be of fundamental importance for a new generation of adoptive T cell-based therapies.Ethics ApprovalThe experiments described were performed in accordance with the European Union Guideline on Animal Experiments and mouse protocols were approved by Italian Ministry of Health and the IEO Committee.


2018 ◽  
Vol 115 (18) ◽  
pp. 4749-4754 ◽  
Author(s):  
Eunseon Ahn ◽  
Koichi Araki ◽  
Masao Hashimoto ◽  
Weiyan Li ◽  
James L. Riley ◽  
...  

PD-1 (programmed cell death-1) is the central inhibitory receptor regulating CD8 T cell exhaustion during chronic viral infection and cancer. Interestingly, PD-1 is also expressed transiently by activated CD8 T cells during acute viral infection, but the role of PD-1 in modulating T cell effector differentiation and function is not well defined. To address this question, we examined the expression kinetics and role of PD-1 during acute lymphocytic choriomeningitis virus (LCMV) infection of mice. PD-1 was rapidly up-regulated in vivo upon activation of naive virus-specific CD8 T cells within 24 h after LCMV infection and in less than 4 h after peptide injection, well before any cell division had occurred. This rapid PD-1 expression by CD8 T cells was driven predominantly by antigen receptor signaling since infection with a LCMV strain with a mutation in the CD8 T cell epitope did not result in the increase of PD-1 on antigen-specific CD8 T cells. Blockade of the PD-1 pathway using anti–PD-L1 or anti–PD-1 antibodies during the early phase of acute LCMV infection increased mTOR signaling and granzyme B expression in virus-specific CD8 T cells and resulted in faster clearance of the infection. These results show that PD-1 plays an inhibitory role during the naive-to-effector CD8 T cell transition and that the PD-1 pathway can also be modulated at this stage of T cell differentiation. These findings have implications for developing therapeutic vaccination strategies in combination with PD-1 blockade.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3849-3849
Author(s):  
Hanna A. Knaus ◽  
Raúl Montiel-Esparza ◽  
Joshua F. Zeidner ◽  
Amanda Blackford ◽  
Christopher G. Kanakry ◽  
...  

Abstract Background: Targeting specific immune inhibitory receptors (iRs) with monoclonal antibodies has led to paradigm-shifting treatment practices in a variety of solid cancers. These advances were in part driven by tremendous progress in phenotypic and functional characterization of altered iR expression patterns and memory T cell differentiation states such as exhaustion and senescence. Effector T cell dynamics and iR expression patterns in AML patients (pts) at diagnosis and after induction chemotherapy are not well understood and, if deciphered, are poised to be critically important for optimal integration of therapeutic blockade of various iRs in the clinic. Methods: We analyzed T cell dynamics and iR expression in peripheral blood (PB, n=45) and bone marrow (BM, n=38) cells from 49 pts (median age 60, range 21-76) with newly diagnosed AML. After induction, 36 (73%) pts entered complete remission (CR) whereas 13 (27%) were non responders (NR). Samples were collected at diagnosis, upon recovery after induction and following consolidation/salvage chemotherapy. Using multi-parameter flow cytometry, we characterized the differentiation status (CD45RA, CCR7), and the expression of co-stimulatory receptors (CD27, CD28) and iRs. Our gating strategy excluded NK T cells (CD3+ CD56+) from downstream analyses. Co-expression of iRs was analyzed in combination of 3 (2B4, BTLA, TIM3) or 4 (KLRG-1, CD57, PD-1 and CD160) markers. As a control, we used PB (n=41)/BM (n=16) lymphocytes from healthy controls (HC). Percentage of cells expressing specific markers were log transformed and modeled with mixed-effect linear regression models. Differential response outcomes over time were tested with interaction terms. Co-expression of multiple iRs was also analyzed with SPICE software version 5.3. Results: At diagnosis, AML pts showed significantly lower median frequency of CD8+ naïve (CD45RA+ CCR7+) T cells in PB, but higher frequencies of terminal differentiated effector memory (TEMRA; CD45RA+ CCR7-) and phenotypically senescent CD8+ CD27- CD28- CD57+ T cells. Significantly higher percentages of PB CD4+ and CD8+ T cells were found to express PD1 and 2B4 compared to HC. Additionally, the frequency of PB CD8+ T cells co-expressing 2-4 iRs was significantly higher in the PB of AML pts (Fig.1). Surprisingly, in contrast to PB, the only significant finding in the BM of AML pts at diagnosis was increased frequency of CD8+ CD27- CD28- CD57+ T cells (p<0.001) compared to HC. At the time of hematopoietic recovery from chemotherapy, TEMRAs and CD8+ CD27- CD28- CD57+ T cells significantly decreased in PB and BM of AML pts, compared to pretreatment levels. However, if analyzed by response, frequencies of these populations declined only in CR pts (p<0.001), but remained unchanged in NR pts. Analysis of iR co-expression in relation to the response to chemotherapy and time revealed that the frequency of CD8+ T cells co-expressing multiple IRs decreases in CR pts but increases in NR pts. These response-associated changes in iR co-expression were observed only in BM while, in PB, the iR co-expression profile remained unchanged irrespective of response. Finally, we assessed the effect of diverse pre-treatment factors on T cell composition at AML diagnosis. We found that older age was associated with increased frequency of CD8+ T cells expressing the iR marker KLRG-1 and the senescent T cell phenotype CD8+ CD27- CD28- CD57+ (p<0.001) but age did not affect iR co-expression on T cells in either PB or BM. CMV seropositivity was associated with increased CD8+ TEMRAs in PB and CD8+ T cells co-expressing multiple iRs (mostly Tim3 and 2B4) in both compartments. The effect of sex, cytogenetic risk group, or ELN category was insignificant. Conclusion: Our study provides critical insights into T cell differentiation and iR expression at diagnosis and during the course of treatment in pts with AML. We have identified several dominant expression patterns suggesting that iR signatures are consistent with immune recognition of AML and their role in sculpting the effector T cell responses directed against AML cell populations. However, data need to be interpreted in the context of the anatomical compartment and non-inheritable variables such as CMV and age. While ongoing work is focused on the deciphering significance of IRs expression for the interpretation of T cell functionality, our data support the rationale for therapeutic blocking of iRs in AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 189-189
Author(s):  
R. Anthony Barnitz ◽  
Makoto Kurachi ◽  
Madeleine E. Lemieux ◽  
Nir Yosef ◽  
Michael A. DiIorio ◽  
...  

Abstract Following activation by antigen, costimulation, and inflammation, naïve CD8+ T cells initiate a program of clonal expansion and differentiation resulting in wide-spread changes in expression of genes involved in cell-cycle, metabolism, effector function, apoptosis, and homing. Although, several key transcription factors (TFs) have been shown to be important in effector CD8+ T cell differentiation, the precise transcriptional regulation of this differentiation program remains poorly understood. The AP-1 family member BATF plays an important role in regulating differentiation and function in CD4+ Th17 cells, CD4+ follicular helper T cells, and in Ig class switching in B cells. We now show that BATF is also required for effector CD8+ T cell differentiation and regulates a core program of genes involved in effector differentiation. We found that BATF expression is rapidly up-regulated during effector CD8+ T cell differentiation in the mouse model of lymphocytic choriomeningitis virus (LCMV) infection. To examine the role of BATF in effector differentiation, we studied congenically distinct wild type (WT) and BATF knockout (KO) naïve P14 TCR transgenic CD8+ T cells co- transferred into a WT host. Upon infection, the BATF KO cells exhibited a profound, cell-intrinsic defect in effector CD8+ T cell differentiation, with a ∼400-fold decrease in peak number of effector cells. BATF KO effectors showed sustained activation and increased cell death by the mid-expansion phase of the immune response. To address the question of how loss of BATF causes such a severely diminished antigen-specific response, we profiled the binding sites of BATF throughout the genome by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq) in primary CD8+ effector cells. We found that BATF bound to regulatory regions in many genes critical for effector differentiation, including transcription factors (e.g. Tbx21, Eomes, Prdm1), genes involved in cytokine signaling (e.g. Il12rb2, Il2ra), homing (e.g. Sell, Selp, Ccr9), effector function (e.g. Gzmb, Ifng, Il2), apoptosis (e.g. Bcl2, Bcl2l1, Mcl1), and T cell activation (e.g. Ctla4, Cd247, Tnfrsf4), suggesting a major role for BATF in effector CD8+ T cell differentiation. Indeed, we found that genes bound by BATF were highly significantly overrepresented among genes that changed as a result of naïve CD8+ T cells differentiating into effectors in vivo (P = 10-27). Comparison of gene expression in in vitro WT and BATF KO effectors confirmed that BATF bound genes were perturbed by BATF loss of function. Analysis of the kinetics of gene expression during the first 72 hours of effector differentiation showed that loss of BATF perturbed the temporal sequence of expression of critical transcription factors, such as T-bet and Eomes, and resulted in inappropriately early cytokine expression. This suggests that BATF may be required to coordinate the earliest events in CD8+ T cell effector differentiation. To test this hypothesis, we used in vivo CFSE tracking to follow the early CD8+ T cell response during LCMV infection. We found that while BATF KO CD8+ T cells initiate cell division, there was a dramatic collapse in the ability to sustain proliferation and differentiation as early as day 3 post-infection. These results indicate that BATF ensures the orderly progression of a program of genes required by effector cells, restraining the expression of some and promoting the expression of others. More broadly, our results suggest that BATF may provide a common regulatory infrastructure for the development of effector cells in all T cell lineages. Disclosures: Wherry: Genentech: Patents & Royalties.


Blood ◽  
2013 ◽  
Vol 121 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Moutih Rafei ◽  
Alexandre Rouette ◽  
Sylvie Brochu ◽  
Juan Ruiz Vanegas ◽  
Claude Perreault

Abstract The primary consequence of positive selection is to render thymocytes responsive to cytokines and chemokines expressed in the thymic medulla. In the present study, our main objective was to discover which cytokines could support the differentiation of positively selected thymocytes. To this end, we have developed an in vitro model suitable for high-throughput analyses of positive selection and CD8 T-cell differentiation. The model involves coculture of TCRhiCD5intCD69− double-positive (DP) thymocytes with peptide-pulsed OP9 cells and γc-cytokines. We report that IL-4, IL-7, and IL-21 have nonredundant effects on positively selected DP thymocytes. IL-7 signaling phosphorylates STAT5 and ERK; induces Foxo1, Klf2, and S1pr1; and supports the differentiation of classic CD8 T cells. IL-4 activates STAT6 and ERK and supports the differentiation of CD8intPD-L1hiCD44hiEOMES+ innate CD8 T cells. IL-21 is produced by thymic epithelial cells and the IL-21 receptor-α is strongly induced on DP thymocytes undergoing positive selection. IL-21 signaling phosphorylates STAT3 and STAT5, but not ERK, and does not support CD8 T-cell differentiation. However, IL-21 has a unique ability to up-regulate BCL-6, expand DP thymocytes undergoing positive selection, and increase the production of mature T cells. Our data suggest that injection of recombinant IL-21 might enhance thymic output in subjects with age- or disease-related thymic atrophy.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2761-2761
Author(s):  
Nicholas J. Hess ◽  
David Turicek ◽  
Amy Hudson ◽  
Peiman Hematti ◽  
Jenny Gumperz ◽  
...  

Abstract Acute graft-vs-host disease (aGVHD) and cancer relapse remain the primary complications following an allogeneic hematopoietic stem cell transplantation (allo-HSCT) for malignant blood disorders. While post-transplant cyclophosphamide combined with standard GVHD prophylaxis has greatly reduced the overall prevalence and severity of aGVHD, relapse rates remain a concern. There is thus a need to identify the specific human T cell populations mediating GVHD vs GVL activity as a means to develop targeted therapeutics capable of controlling aGVHD without inhibiting GVL activity. In this study, we identify a novel human T cell population that develops after transplant that is predictive and sufficient for GVHD pathology. To determine the role of human T cell populations in aGVHD, we performed xenogeneic transplantation studies using primary human graft tissue from a variety of sources (peripheral blood, G-CSF mobilized peripheral blood, bone marrow and umbilical cord blood) in addition to collecting primary human aGVHD blood samples from our clinic. Using the LD50 dose of human graft tissue, we identified a novel mature CD4 +/CD8αβ + double positive (DP) T cell population that only developed after transplantation. The development of this population was further confirmed in aGVHD patients from our clinic. The presence of DP T cells, irrespective of graft source, was also predictive of lethal GVHD in as early as one week after xenogeneic transplantation. To identify the origin of DP T cells, we transplanted isolated human CD4 or CD8 T cells into mice which showed that DP T cells only arise from the CD8 pool. Furthermore, re-transplantation of flow-sorted CD8 T cells from GVHD mice did not reveal a 2nd wave of DP T cell differentiation. This data, in addition to their highly proliferative state, suggests that DP T cells represent highly activated CD8 T cell clones. The ability of these CD8-derived DP T cells to gain CD4 expression coincides with their co-expression of both RUNX3 and THPOK, the master transcription factors of the CD8 and CD4 lineages respectively, that classically repress each other. Intracellular cytokine staining also revealed that DP T cells are the primary activated T cell population in xenogeneic GVHD, secreting both modulatory and cytotoxic cytokines (e.g. IFNγ, IL-17A, IL-22, perforin and granzyme). Ex vivo re-stimulation or re-transplantation of flow-sorted DP T cells showed that this T cell population is capable of dividing and expanding independent of CD4 and CD8 single positive T cells with the majority of the isolated DP T cells retaining their co-expression of CD4 and CD8. Finally, transplantation of either isolated human peripheral blood CD4 or CD8 T cell populations were capable of causing lethal GVHD. Conversely, re-transplantation of flow-sorted DP, CD8 or CD4 T cells from GVHD mice revealed that DP and CD4 T cells are sufficient to mediate GVHD pathology but re-transplanted CD8 T cell are not. This correlates with the absence of DP T cell differentiation in that re-transplanted CD8 population. The differentiation of DP T cells from chronically activated CD8 T cells represents a novel mechanism of GVHD pathology not previously described. The presence of DP T cells in other chronic inflammatory human diseases also suggests a broader pathology mediated by DP T cells. Further understanding of DP T cell differentiation and pathology may lead to targeted prophylaxis and/or treatment regimens for aGVHD and other human chronic inflammatory diseases. Figure 1 Figure 1. Disclosures Capitini: Nektar Therapeutics: Honoraria; Novartis: Honoraria.


2020 ◽  
Vol 33 (1) ◽  
pp. 27-37
Author(s):  
Maria A Cardenas ◽  
Nataliya Prokhnevska ◽  
Haydn T Kissick

Abstract Tumor-infiltrating CD8 T cells are associated with improved patient survival and response to immunotherapy in various cancers. Persistent antigen leads to CD8 T-cell exhaustion, where proliferation/self-renewal and killing are divided within distinct subsets of CD8 T cells in the tumor. CD8 T-cell responses in chronic antigen settings must be maintained for long periods of time, suggesting that mechanisms that regulate chronic CD8 T-cell responses may differ from those in acute settings. Currently, factors that regulate the maintenance of stem-like CD8 T cells in the tumor or their differentiation into terminally differentiated cells are unknown. In this review, we discuss the role of dendritic cells in the activation and differentiation of CD8 T-cell subsets within secondary lymphoid tissue and tumors. In addition, we examine changes in CD4 T-cell differentiation in response to chronic antigens and consider how subset-specific mechanisms could assist the stem-like and terminally differentiated CD8 T-cell subsets. Finally, we highlight how tumor-infiltrating CD4 T cells and dendritic cells interact with CD8 T cells within organized lymphoid-like areas in the tumor and propose a CD8 T-cell differentiation model that requires the collaboration of CD4 T cells and dendritic cells. These organized interactions coordinate the anti-tumor response and control disease progression by mechanisms that regulate CD8 T-cell differentiation, which permit the maintenance of an effective balance of stem-like and terminally differentiated CD8 T cells.


2021 ◽  
Vol 118 (16) ◽  
pp. e2013452118
Author(s):  
David M. Schauder ◽  
Jian Shen ◽  
Yao Chen ◽  
Moujtaba Y. Kasmani ◽  
Matthew R. Kudek ◽  
...  

During an acute viral infection, CD8 T cells encounter a myriad of antigenic and inflammatory signals of variable strength, which sets off individual T cells on their own differentiation trajectories. However, the developmental path for each of these cells will ultimately lead to one of only two potential outcomes after clearance of the infection—death or survival and development into memory CD8 T cells. How this cell fate decision is made remains incompletely understood. In this study, we explore the transcriptional changes during effector and memory CD8 T cell differentiation at the single-cell level. Using single-cell, transcriptome-derived gene regulatory network analysis, we identified two main groups of regulons that govern this differentiation process. These regulons function in concert with changes in the enhancer landscape to confer the establishment of the regulatory modules underlying the cell fate decision of CD8 T cells. Furthermore, we found that memory precursor effector cells maintain chromatin accessibility at enhancers for key memory-related genes and that these enhancers are highly enriched for E2A binding sites. Finally, we show that E2A directly regulates accessibility of enhancers of many memory-related genes and that its overexpression increases the frequency of memory precursor effector cells and accelerates memory cell formation while decreasing the frequency of short-lived effector cells. Overall, our results suggest that effector and memory CD8 T cell differentiation is largely regulated by two transcriptional circuits, with E2A serving as an important epigenetic regulator of the memory circuit.


2021 ◽  
Author(s):  
Juan Fernandez-Garcia ◽  
Fabien Franco ◽  
Sweta Parik ◽  
Antonino A Pane ◽  
Dorien Broekaert ◽  
...  

Cytotoxic T cells dynamically rewire their metabolism during the course of an immune response. While T cell metabolism has been extensively studied at phenotypic endpoints of activation and differentiation, the underlying dynamics remain largely elusive. Here, we leverage on single-cell RNA-sequencing (scRNA-seq) measurements of in vitro activated and differentiated CD8+ T cells cultured in physiological media to resolve these metabolic dynamics. We find that our scRNA-seq analysis identifies most metabolic changes previously defined in in vivo experiments, such as a rewiring from an oxidative to an anabolism-promoting metabolic program during activation to an effector state, which is later reverted upon memory polarization. Importantly, our scRNA-seq data further provide a dynamic description of these changes. In this sense, our data predict a differential time-dependent reliance of CD8+ T cells on the synthesis versus uptake of various non-essential amino acids during T cell activation, which we corroborate with additional functional in vitro experiments. We further exploit our scRNA-seq data to identify metabolic genes that could potentially dictate the outcome of T cell differentiation, by ranking them based on their expression dynamics. Among the highest-ranked hits, we find asparagine synthetase (Asns), whose expression sharply peaks for effector CD8+ T cells and further decays towards memory polarization. We then confirm that these in vitro Asns expression dynamics are representative of an in vivo situation in a mouse model of viral infection. Moreover, we find that disrupting these expression dynamics in vitro, by depleting asparagine from the culture media, delays central-memory polarization. Accordingly, we find that preventing the decay of ASNS by stable overexpression at the protein level in vivo leads to a significant increase in effector CD8+ T cell expansion, and a concomitant decrease in central-memory formation, in a mouse model of viral infection. This shows that ASNS expression dynamics dictate the fate of CD8+ T cell differentiation. In conclusion, we provide a resource of dynamic expression changes during CD8+ T cell activation and differentiation that is expected to increase our understanding of the dynamic metabolic requirements of T cells progressing along the immune response cascade.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2662-2662
Author(s):  
Arnob Banerjee ◽  
Scott M. Gordon ◽  
Andrew M. Intlekofer ◽  
E. John Wherry ◽  
Steven L. Reiner

Abstract Abstract 2662 Poster Board II-638 The differentiation of central memory CD8+ T cells after vaccination or primary pathogen encounter is critical for the establishment of long-lasting protection against pathogens including intracellular infectious organisms and malignancies. Unfortunately, the mechanisms of immune memory establishment are unclear, preventing the development of effective vaccines to many emerging pathogens. Naïve CD8+ T cells responding to intracellular pathogens undergo rounds of cell division and progressive differentiation to give rise to terminally differentiated effector cells and memory cells to provide acute and long-lasting immunity, respectively. T-bet and Eomesodermin (Eomes), key transcription factors in this differentiation, share significant DNA binding domain sequence and functional homology, although their distinct expression patterns and non-DNA binding domains suggest potential non-redundant functions. T-bet drives effector and effector-memory differentiation, suppressing the formation of long-lasting central memory CD8+ T cells. We now show that CD8+ T cells responding to acute infection with the lymphocytic choriomeningitis virus (LCMV) display significant heterogeneity in the relative expression levels of T-bet and Eomes on a single cell level. Using mice with a tissue specific deletion of Eomes in T cells, we show defective central-memory differentiation in CD8+ T cells lacking Eomes after infection with LCMV. We observe defects in both long-term persistence and re-expansion on re-challenge, two defining characteristics of central-memory T cells, in memory CD8+ T cells lacking Eomes. These results demonstrate that, in direct contrast to T-bet, Eomes promotes central-memory CD8+ T cell differentiation. Thus, the balance of T-bet and Eomes expression may determine the propensity for CD8+ T cell terminal effector differentation versus long-lived memory differentiation. Our findings demonstrate a crucial role for Eomes in the differentiation of pathogen specific central memory CD8+ T cells which can provide life-long immune protection. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document