scholarly journals Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation

2011 ◽  
Vol 208 (2) ◽  
pp. 369-381 ◽  
Author(s):  
Amariliz Rivera ◽  
Tobias M. Hohl ◽  
Nichole Collins ◽  
Ingrid Leiner ◽  
Alena Gallegos ◽  
...  

Pulmonary infection of mice with Aspergillus fumigatus induces concurrent T helper type 1 (Th1) and Th17 responses that depend on Toll-like receptor/MyD88 and Dectin-1, respectively. However, the mechanisms balancing Th1 and Th17 CD4 T cell populations during infection remain incompletely defined. In this study, we show that Dectin-1 deficiency disproportionally increases Th1 responses and decreases Th17 differentiation after A. fumigatus infection. Dectin-1 signaling in A. fumigatus–infected wild-type mice reduces IFN-γ and IL-12p40 expression in the lung, thereby decreasing T-bet expression in responding CD4 T cells and enhancing Th17 responses. Absence of IFN-γ or IL-12p35 in infected mice or T-bet in responding CD4 T cells enhances Th17 differentiation, independent of Dectin-1 expression, in A. fumigatus–infected mice. Transient deletion of monocyte-derived dendritic cells also reduces Th1 and boosts Th17 differentiation of A. fumigatus–specific CD4 T cells. Our findings indicate that Dectin-1–mediated signals alter CD4 T cell responses to fungal infection by decreasing the production of IL-12 and IFN-γ in innate cells, thereby decreasing T-bet expression in A. fumigatus–specific CD4 T cells and enabling Th17 differentiation.

2003 ◽  
Vol 198 (12) ◽  
pp. 1909-1922 ◽  
Author(s):  
Souheil-Antoine Younes ◽  
Bader Yassine-Diab ◽  
Alain R. Dumont ◽  
Mohamed-Rachid Boulassel ◽  
Zvi Grossman ◽  
...  

CD4+ T cell responses are associated with disease control in chronic viral infections. We analyzed human immunodeficiency virus (HIV)-specific responses in ten aviremic and eight viremic patients treated during primary HIV-1 infection and for up to 6 yr thereafter. Using a highly sensitive 5-(and-6)-carboxyfluorescein diacetate-succinimidyl ester–based proliferation assay, we observed that proliferative Gag and Nef peptide-specific CD4+ T cell responses were 30-fold higher in the aviremic patients. Two subsets of HIV-specific memory CD4+ T cells were identified in aviremic patients, CD45RA− CCR7+ central memory cells (Tcm) producing exclusively interleukin (IL)-2, and CD45RA− CCR7− effector memory cells (Tem) that produced both IL-2 and interferon (IFN)-γ. In contrast, in viremic, therapy-failing patients, we found significant frequencies of Tem that unexpectedly produced exclusively IFN-γ. Longitudinal analysis of HIV epitope–specific CD4+ T cells revealed that only cells that had the capacity to produce IL-2 persisted as long-term memory cells. In viremic patients the presence of IFN-γ–producing cells was restricted to periods of elevated viremia. These findings suggest that long-term CD4+ T cell memory depends on IL-2–producing CD4+ T cells and that IFN-γ only–producing cells are short lived. Our data favor a model whereby competent HIV-specific Tcm continuously arise in small numbers but under persistent antigenemia are rapidly induced to differentiate into IFN-γ only–producing cells that lack self-renewal capacity.


Immunology ◽  
2007 ◽  
Vol 122 (4) ◽  
pp. 584-595 ◽  
Author(s):  
Fabiola Cardillo ◽  
Edilberto Postol ◽  
Jorge Nihei ◽  
Luiz S. Aroeira ◽  
Auro Nomizo ◽  
...  

2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Junghwa Lee ◽  
Masao Hashimoto ◽  
Se Jin Im ◽  
Koichi Araki ◽  
Hyun-Tak Jin ◽  
...  

ABSTRACT Adenovirus serotype 5 (Ad5) is one of the most widely used viral vectors and is known to generate potent T cell responses. While many previous studies have characterized Ad5-induced CD8 T cell responses, there is a relative lack of detailed studies that have analyzed CD4 T cells elicited by Ad5 vaccination. Here, we immunized mice with Ad5 vectors encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) and examined GP-specific CD4 T cell responses elicited by Ad5 vectors and compared them to those induced by an acute LCMV infection. In contrast to LCMV infection, where balanced CD4 T helper 1 (Th1) and T follicular helper (Tfh) responses were induced, Ad5 immunization resulted in a significantly reduced frequency of Th1 cells. CD4 T cells elicited by Ad5 vectors expressed decreased levels of Th1 markers, such as Tim3, SLAM, T-bet, and Ly6C, had smaller amounts of cytotoxic molecules like granzyme B, and produced less interferon gamma than CD4 T cells induced by LCMV infection. This defective CD4 Th1 response appeared to be intrinsic for Ad5 vectors and not a reflection of comparing a nonreplicating vector to a live viral infection, since immunization with a DNA vector expressing LCMV-GP generated efficient CD4 Th1 responses. Analysis at early time points (day 3 or 4) after immunization with Ad5 vectors revealed a defect in the expression of CD25 (interleukin-2 [IL-2] receptor alpha chain) on Ad5-elicited CD4 T cells, and administration of exogenous IL-2 following Ad5 immunization partially restored CD4 Th1 responses. These results suggest that impairment of Th1 commitment after Ad5 immunization could be due to reduced IL-2-mediated signaling. IMPORTANCE During viral infection, generating balanced responses of Th1 and Tfh cells is important to induce effective cell-mediated responses and provide optimal help for antibody responses. In this study, to investigate vaccine-induced CD4 T cell responses, we characterized CD4 T cells after immunization with Ad5 vectors expressing LCMV-GP in mice. Ad5 vectors led to altered effector differentiation of LCMV GP-specific CD4 T cells compared to that during LCMV infection. CD4 T cells following Ad5 immunization exhibited impaired Th1 lineage commitment, generating significantly decreased Th1 responses than those induced by LCMV infection. Our results suggest that suboptimal IL-2 signaling possibly plays a role in reduced Th1 development following Ad5 immunization.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4351-4351
Author(s):  
Shigeo Fuji ◽  
Julia Fischer ◽  
Markus Kapp ◽  
Thomas G Bumm ◽  
Hermann Einsele ◽  
...  

Abstract Abstract 4351 Wilms‘ tumor protein-1 (WT1) is one of the most investigated tumor-associated antigens (TAA) in hematological malignancies. CD8 T-cell responses against several WT1-derived peptides have been characterized and are known to contribute to disease control after allogeneic hematopoietic stem cell transplantation (HSCT). Also the identification of human leukocyte antigen (HLA) class II-restricted CD4 T-cell epitopes from WT1 is a challenging task of T-cell-based cancer immunotherapy to improve the effectiveness of WT1 peptide vaccination. We found a highly immunogenic WT1 peptide composed of only 9 amino acids having the ability to induce IFN-γ secretion in CD4 T-cells in an HLA DR-restricted manner. This finding is of great interest as it was generally accepted that HLA class II binding peptides are composed of at least 12 amino acids being recognized by CD4 T-cells, whereas HLA class I binding peptides are composed of 8–11 amino acids being recognized by CD8 T-cells (Wang et al Mol. Immunol. 2002). However, both HLA class I and class II molecules bind to primary and secondary peptide anchor motifs covering the central 9–10 amino acids. Thus, considering this common structural basis for peptide binding there is a possibility that the WT1 9-mer peptide binds to HLA class II molecules, and induces CD4 T-cell responses. IFN-γ induction in response to several WT1 9-mer peptides was screened in 24 HLA-A*02:01 positive patients with acute myeloid leukemia or myelodysplastic syndrome after allogeneic HSCT. Responses to one WT1 9-mer peptide were exclusively detected in CD3+CD4+ T-cells of 2 patients after allogeneic HSCT, but not in CD3+CD4+ T-cells of their corresponding HSC donors. CD4+ T-cell responses to this WT1 9-mer peptide exhibited high levels of functional avidity, as IFN-γ induction was detected after stimulation with 100 ng peptide per mL. Peptide-induced IFN-γ production was confirmed with IFN-γ ELISPOT assays and the HLA restriction of the T-cell response was determined by HLA blocking antibodies. The reaction was significantly blocked by anti-pan HLA class II antibody (85 % reduction), but neither by pan-HLA class I nor by anti-HLA A2 antibody. To identify the subtype of HLA class II molecule, blocking assays with antibodies against HLA-DP, HLA-DR and HLA-DQ were performed. IFN-γ induction was completely abrogated by anti-HLA-DR antibody (99 % reduction) (fig 1, p value of unpaired student‘s t-test <0.0001 for the medium control vs anti-pan HLA class II antibody or anti-HLA-DR antibody, respectively). To test whether IFN-γ was exclusively induced in CD4 T cells, CD4 or CD8 T-cells were depleted from PBMC. Whereas CD8 T-cell depletion did not affect IFN-γ induction, CD4 T-cell depletion completely abrogated the WT1 9-mer peptide induced response (fig 2). CD4 T-cells responding to the WT1 9-mer peptide were indicated to be functional cytotoxic T-cells with an effector CD4 T-cell phenotype. Longitudinal analyses demonstrated the persistence and functionality of WT1 9-mer specific CD4 T-cells in PBMC of patients even at day 1368 after allogeneic HSCT. These data indicate for the first time that a TAA-derived 9-mer peptide can induce HLA class II-restricted CD4 T-cell responses. Vaccination with the characterized WT1 9-mer peptide can enhance the induction and maintenance of not only CD4 but also indirect CD8 T-cell responses. Considering that CD4 T-cells play an important role in tumor rejection, the possibility that other TAA-derived 9-mer peptides having the potential to induce CD4 T-cell responses should be explored in other settings of tumor immunology as well to improve vaccination strategies. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 196 (5) ◽  
pp. 619-628 ◽  
Author(s):  
Tomohide Tatsumi ◽  
Lisa S. Kierstead ◽  
Elena Ranieri ◽  
Loreto Gesualdo ◽  
Francesco P. Schena ◽  
...  

T helper type 1 (Th1)-type CD4+ antitumor T cell help appears critical to the induction and maintenance of antitumor cytotoxic T lymphocyte (CTL) responses in vivo. In contrast, Th2- or Th3/Tr-type CD4+ T cell responses may subvert Th1-type cell-mediated immunity, providing a microenvironment conducive to disease progression. We have recently identified helper T cell epitopes derived from the MAGE-6 gene product; a tumor-associated antigen expressed by most melanomas and renal cell carcinomas. In this study, we have assessed whether peripheral blood CD4+ T cells from human histocompatibility leukocyte antigens (HLA)-DRβ1*0401+ patients are Th1- or Th2-biased to MAGE-6 epitopes using interferon (IFN)-γ and interleukin (IL)-5 enzyme-linked immunospot assays, respectively. Strikingly, the vast majority of patients with active disease were highly-skewed toward Th2-type responses against MAGE-6–derived epitopes, regardless of their stage (stage I versus IV) of disease, but retained Th1-type responses against Epstein-Barr virus– or influenza-derived epitopes. In marked contrast, normal donors and cancer patients with no current evidence of disease tended to exhibit either mixed Th1/Th2 or strongly Th1-polarized responses to MAGE-6 peptides, respectively. CD4+ T cell secretion of IL-10 and transforming growth factor (TGF)-β1 against MAGE-6 peptides was not observed, suggesting that specific Th3/Tr-type CD4+ subsets were not common events in these patients. Our data suggest that immunotherapeutic approaches will likely have to overcome or complement systemic Th2-dominated, tumor-reactive CD4+ T cell responses to provide optimal clinical benefit.


2000 ◽  
Vol 191 (5) ◽  
pp. 847-858 ◽  
Author(s):  
Ryuta Nishikomori ◽  
Rolf O. Ehrhardt ◽  
Warren Strober

The differentiation of CD4+ T cells into T helper type 1 (Th1) cells is driven by interleukin (IL)-12 through the IL-12 receptor β2 (IL-12Rβ2) chain, whereas differentiation into Th2 cells is driven by IL-4, which downregulates IL-12Rβ2 chain. We reexamined such differentiation using IL-12Rβ2 chain transgenic mice. We found that CD4+ T cells from such mice were able to differentiate into Th2 cells when primed with IL-4 or IL-4 plus IL-12. In the latter case, the presence of IL-4 suppressed interferon (IFN)-γ production 10–100-fold compared with cells cultured in IL-12 alone. Finally, in studies of the ability of IL-12 to convert Th2 cells bearing a competent IL-12R to the Th1 cells, we showed that: (a) T cells bearing the IL-12Rβ2 chain transgene and primed under Th2 conditions could not be converted to Th1 cells by repeated restimulation under Th1 conditions; and (b) established Th2 clones transfected with the IL-12Rβ2 chain construct continued to produce IL-4 when cultured with IL-12. These studies show that IL-4–driven Th2 differentiation can occur in the presence of persistent IL-12 signaling and that IL-4 inhibits IFN-γ production under these circumstances. They also show that established Th2 cells cannot be converted to Th1 cells via IL-12 signaling.


2009 ◽  
Vol 83 (10) ◽  
pp. 4934-4941 ◽  
Author(s):  
Jie Liu ◽  
Tracy J. Ruckwardt ◽  
Man Chen ◽  
Teresa R. Johnson ◽  
Barney S. Graham

ABSTRACT CD4 T cells have been shown to play an important role in the immunity and immunopathogenesis of respiratory syncytial virus (RSV) infection. We identified two novel CD4 T-cell epitopes in the RSV M and M2 proteins with core sequences M213-223 (FKYIKPQSQFI) and M227-37 (YFEWPPHALLV). Peptides containing the epitopes stimulated RSV-specific CD4 T cells to produce gamma interferon (IFN-γ), interleukin 2 (IL-2), and other Th1- and Th2-type cytokines in an I-Ab-restricted pattern. Construction of fluorochrome-conjugated peptide-I-Ab class II tetramers revealed RSV M- and M2-specific CD4 T-cell responses in RSV-infected mice in a hierarchical pattern. Peptide-activated CD4 T cells from lungs were more activated and differentiated, and had greater IFN-γ expression, than CD4 T cells from the spleen, which, in contrast, produced greater levels of IL-2. In addition, M209-223 peptide-activated CD4 T cells reduced IFN-γ and IL-2 production in M- and M2-specific CD8 T-cell responses to Db-M187-195 and Kd-M282-90 peptides more than M225-39 peptide-stimulated CD4 T cells. This correlated with the fact that I-Ab-M209-223 tetramer-positive cells responding to primary RSV infection had a much higher frequency of FoxP3 expression than I-Ab-M226-39 tetramer-positive CD4 T cells, suggesting that the M-specific CD4 T-cell response has greater regulatory function. Characterization of epitope-specific CD4 T cells by novel fluorochrome-conjugated peptide-I-Ab tetramers allows detailed analysis of their roles in RSV pathogenesis and immunity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2561-2561
Author(s):  
Joseph H. Chewning ◽  
Weiwei Zhang ◽  
Trenton Schoeb ◽  
Casey Weaver

Abstract The Th1 and Th2 lineages of CD4+ T helper cells are essential for control of host infection. Both lineages respond to antigenic stimulation with distinct effector functions and cytokine profiles. Differential homing patterns permit localization within specific tissue sites where these cells interact with other immune cells to promote the immune response. Variability in T helper lineage homing is due, in part, to differing chemokine receptor expression patterns. This laboratory and others recently described another CD4+ T helper lineage, Th17. Following stimulation, Th17 cells also produce a unique cytokine profile, including interleukin (IL)-17, IL-21, and IL-22. The Th17 lineage has now been implicated in the pathogenesis of several human autoimmune diseases, including psoriasis and inflammatory bowel disease, and appears to be critical for the inflammation of both the skin and gastrointestinal tract, respectively, seen in these diseases. It is not well understood whether Th17 cells arise within the inflammatory milieu in these tissues, or whether these cells possess a distinct homing pattern. We have performed studies using in vitro polarized Th17 cells for the study of tissue homing patterns in vivo. Experiments were performed using the well-described HLA Class II-disparate C57BL/6 (B6) to B6.C-H-2bm12 (bm12) model. Previous studies have established CD4+ T cell-dependent inflammation in this model. Naïve CD4+ T cells from B6 mice were polarized to the Th17 lineage in vitro using standard techniques, including IL-6 and TGF-β. FACS analysis of the Th17 cells prior to adoptive transfer revealed IL-17-positive staining in &gt;60% cells and IFN-γ-positivity in &lt;10%. Th17 or Th2-polarized control cells (1 × 106) were transferred into lethally irradiated bm12 mice (or syngeneic B6 control mice). Mice receiving Th17 cells demonstrated weight gain in the initial weeks compared to Th2 control recipients, but less than B6 syngeneic recipients. The Th17 recipients appeared less active, however, and most mice in this group eventually became moribund, requiring euthanasia. Complete necropsy was performed on mice from each group at intervals following transfer. Tissue analysis in the Th17 recipients revealed marked inflammation within the lungs, skin, liver, and gastrointestinal tract. Syngeneic B6 recipients of Th17 cells also demonstrated a similar tissue pattern, but with markedly reduced inflammation. Tissues from the bm12 Th2-polarized cell control mice, as well as T cell depleted marrow alone recipients did not demonstrate significant inflammation. Additional time course experiments revealed the initial target organs affected as the lungs and stomach, with subsequent involvement of other affected organs. FACS analysis of recipient hematopoietic tissues, using CD45.1 isotype distinction, revealed Th17 cell proliferation within the bm12 allogeneic recipients compared to the B6 syngeneic recipient mice (25–35% total cells of donor origin compared to 2–8%, respectively). CD4+ T cell counts performed on recipient spleens confirmed increased proliferation of Th17 cells within the allogeneic recipient compared to Th2 allogeneic and Th17 syngeneic controls (108 total donor-derived cells compared to 106 and 107, respectively). Cytokine analysis was performed by FACS on CD4+ T cells harvested from tissues. In contrast to pre-transfer analysis, the transferred CD4+ T cells harvested from allogeneic bm12 recipients secreted increased amounts of IFN-γ (12–33%) concomitant with a decrease in IL-17 production. Our studies demonstrate that Th17 CD4+ T cells are able to home to mucosal sites of early antigen encounter, in both the allogeneic and syngeneic setting. This pattern is consistent with the known role of IL-17 in innate immune response to infection. In the setting of chronic T cell stimulation, we also observed that Th17 cells can transition to a Th1-like, IFN-γ-producing CD4+ T cell. The skin, lungs, and GI tract are important sites of initial antigen encounter, and understanding the CD4+ Th17 T cell homing and proliferation patterns could have important implications in understanding both innate and adaptive immune responses to acute infection. Ongoing studies are underway to identify the role of specific chemokine receptors responsible for Th17 homing.


2002 ◽  
Vol 195 (5) ◽  
pp. 603-616 ◽  
Author(s):  
Franck J. Barrat ◽  
Daniel J. Cua ◽  
André Boonstra ◽  
David F. Richards ◽  
Chad Crain ◽  
...  

We show that a combination of the immunosuppressive drugs, vitamin D3 and Dexamethasone, induced human and mouse naive CD4+ T cells to differentiate in vitro into regulatory T cells. In contrast to the previously described in vitro derived CD4+ T cells, these cells produced only interleukin (IL)-10, but no IL-5 and interferon (IFN)-γ, and furthermore retained strong proliferative capacity. The development of these IL-10–producing cells was enhanced by neutralization of the T helper type 1 (Th1)- and Th2–inducing cytokines IL-4, IL-12, and IFN-γ. These immunosuppressive drugs also induced the development of IL-10–producing T cells in the absence of antigen-presenting cells, with IL-10 acting as a positive autocrine factor for these T cells. Furthermore, nuclear factor (NF)-κB and activator protein (AP)-1 activities were inhibited in the IL-10–producing cells described here as well as key transcription factors involved in Th1 and Th2 subset differentiation. The regulatory function of these in vitro generated IL-10–producing T cells was demonstrated by their ability to prevent central nervous system inflammation, when targeted to the site of inflammation, and this function was shown to be IL-10 dependent. Generating homogeneous populations of IL-10–producing T cells in vitro will thus facilitate the use of regulatory T cells in immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document