scholarly journals The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in

2011 ◽  
Vol 208 (3) ◽  
pp. 421-428 ◽  
Author(s):  
Armin Ehninger ◽  
Andreas Trumpp

Stem cell niches are defined as the cellular and molecular microenvironments that regulate stem cell function together with stem cell autonomous mechanisms. This includes control of the balance between quiescence, self-renewal, and differentiation, as well as the engagement of specific programs in response to stress. In mammals, the best understood niche is that harboring bone marrow hematopoietic stem cells (HSCs). Recent studies have expanded the number of cell types contributing to the HSC niche. Perivascular mesenchymal stem cells and macrophages now join the previously identified sinusoidal endothelial cells, sympathetic nerve fibers, and cells of the osteoblastic lineage to form similar, but distinct, niches that harbor dormant and self-renewing HSCs during homeostasis and mediate stem cell mobilization in response to granulocyte colony-stimulating factor.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chengguang Wu ◽  
Long Chen ◽  
Yi-zhou Huang ◽  
Yongcan Huang ◽  
Ornella Parolini ◽  
...  

Human multipotent stem cell-based therapies have shown remarkable potential in regenerative medicine and tissue engineering applications due to their abilities of self-renewal and differentiation into multiple adult cell types under appropriate conditions. Presently, human multipotent stem cells can be isolated from different sources, but variation among their basic biology can result in suboptimal selection of seed cells in preclinical and clinical research. Thus, the goal of this study was to compare the biological characteristics of multipotent stem cells isolated from human bone marrow, placental decidua basalis, and urine, respectively. First, we found that urine-derived stem cells (USCs) displayed different morphologies compared with other stem cell types. USCs and placenta decidua basalis-derived mesenchymal stem cells (PDB-MSCs) had superior proliferation ability in contrast to bone marrow-derived mesenchymal stem cells (BMSCs); these cells grew to have the highest colony-forming unit (CFU) counts. In phenotypic analysis using flow cytometry, similarity among all stem cell marker expression was found, excluding CD29 and CD105. Regarding stem cell differentiation capability, USCs were observed to have better adipogenic and endothelial abilities as well as vascularization potential compared to BMSCs and PDB-MSCs. As for osteogenic and chondrogenic induction, BMSCs were superior to all three stem cell types. Future therapeutic indications and clinical applications of BMSCs, PDB-MSCs, and USCs should be based on their characteristics, such as growth kinetics and differentiation capabilities.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2190-2190 ◽  
Author(s):  
Pieter K. Wierenga ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Gerald de Haan ◽  
Ronald P. van Os

Abstract Adhesion molecules have been implicated in the interactions of hematopoietic stem and progenitor cells with the bone marrow extracellular matrix and stromal cells. In this study we examined the role of very late antigen-5 (VLA-5) in the process of stem cell mobilization and homing after stem cell transplantation. In normal bone marrow (BM) from CBA/H mice 79±3 % of the cells in the lineage negative fraction express VLA-5. After mobilization with cyclophosphamide/G-CSF, the number of VLA-5 expressing cells in mobilized peripheral blood cells (MPB) decreases to 36±4%. The lineage negative fraction of MPB cells migrating in vitro towards SDF-1α (M-MPB) demonstrated a further decrease to 3±1% of VLA-5 expressing cells. These data are suggestive for a downregulation of VLA-5 on hematopoietic cells during mobilization. Next, MPB cells were labelled with PKH67-GL and transplanted in lethally irradiated recipients. Three hours after transplantation an increase in VLA-5 expressing cells was observed which remained stable until 24 hours post-transplant. When MPB cells were used the percentage PKH-67GL+ Lin− VLA-5+ cells increased from 36% to 88±4%. In the case of M-MPB cells the number increased from 3% to 33±5%. Although the increase might implicate an upregulation of VLA-5, we could not exclude selective homing of VLA-5+ cells as a possible explanation. Moreover, we determined the percentage of VLA-5 expressing cells immediately after transplantation in the peripheral blood of the recipients and were not able to observe any increase in VLA-5+ cells in the first three hours post-tranpslant. Finally, we separated the MPB cells in VLA-5+ and VLA-5− cells and plated these cells out in clonogenic assays for progenitor (CFU-GM) and stem cells (CAFC-day35). It could be demonstared that 98.8±0.5% of the progenitor cells and 99.4±0.7% of the stem cells were present in the VLA-5+ fraction. Hence, VLA-5 is not downregulated during the process of mobilization and the observed increase in VLA-5 expressing cells after transplantation is indeed caused by selective homing of VLA-5+ cells. To shed more light on the role of VLA-5 in the process of homing, BM and MPB cells were treated with an antibody to VLA-5. After VLA-5 blocking of MPB cells an inhibition of 59±7% in the homing of progenitor cells in bone marrow could be found, whereas homing of these subsets in the spleen of the recipients was only inhibited by 11±4%. For BM cells an inhibition of 60±12% in the bone marrow was observed. Homing of BM cells in the spleen was not affected at all after VLA-5 blocking. Based on these data we conclude that mobilization of hematopoietic progenitor/stem cells does not coincide with a downregulation of VLA-5. The observed increase in VLA-5 expressing cells after transplantation is caused by preferential homing of VLA-5+ cells. Homing of progenitor/stem cells to the bone marrow after transplantation apparantly requires adhesion interactions that can be inhibited by blocking VLA-5 expression. Homing to the spleen seems to be independent of VLA-5 expression. These data are indicative for different adhesive pathways in the process of homing to bone marrow or spleen.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1227-1227
Author(s):  
Elisabeth H. Javazon ◽  
Leslie S. Kean ◽  
Jennifer Perry ◽  
Jessica Butler ◽  
David R. Archer

Abstract Gene therapy and stem cell transplantation are attractive potential therapies for sickle cell disease (SCD). Previous studies have shown that the sickle environment is highly enriched for reactive oxygen species (ROS), but have not addressed whether or not the increased ROS may alter the bone marrow (BM) microenvironment or affect stem cell function. Using the Berkeley sickle mouse model, we examined the effects of sickle cell disease on hematopoietic stem cell function and the bone marrow microenvironment. We transplanted C57BL/6 (control) BM into C57BL/6 and homozygous sickle mice. Recipients received 2 × 106 BM cells and a conditioning regimen consisting of busulfan, anti-asialo GM1, and co-stimulation blockade (anti-CD40L and CTLA4-Ig). Following transplantation, sickle mice demonstrated increased donor cell engraftment in the peripheral blood compared to normal mice (58.3% vs. 33.1%, respectively). Similarly, BMT in a fully allogeneic system also resulted in enhanced engraftment in sickle recipients. Next we analyzed whether or not engraftment defects exist within the BM stem cell population of sickle mice. In vitro colony forming assays showed a significant decrease in progenitor colony formation in sickle compared to control BM. By flow cytometry, we determined that there was a significant decrease in the KSL (c-Kit+, Sca-1+, Lineage−) progenitor population within the BM of sickle mice. Cell cycle analysis of the KSL population demonstrated that significantly fewer sickle KSL cells were in G0 phase compared to control, suggesting that there are fewer quiescent stem cells in the BM of sickle mice. To assess the potential role of ROS and glutathione depletion in sickle mice, we tested the engraftment efficiency of KSL cells from untreated and n-acetyl-cysteine (NAC) treated control, hemizygous sickle (hemi), and sickle mice in a competitive repopulation experiment. Peripheral chimerism showed an engraftment defect from both hemizygous and homozygous sickle mice such that control KSL cells engrafted > hemi > sickle at a ratio of 1 : 0.4 : 0.25. Treatment with NAC for four months prior to transplantation partially restored KSL engraftment (control : hemi : sickle; 1 : 0.97 : 0.56 ). We have demonstrated that congenic and allogeneic BMT into sickle mice result in increased donor cell engraftment in the sickle recipients. Both the decreased number of KSL cells and the decreased percentage of quiescent KSL cells in the sickle mice indicate that more stem cells in the transgenic sickle mouse model are mobilized from the BM environment. The engraftment defect of sickle KSL cells that was partially ameliorated by NAC treatment suggests that an altered redox environment in sickle mice may contribute to the engraftment deficiencies that we observed.


Blood ◽  
1992 ◽  
Vol 80 (12) ◽  
pp. 3044-3050 ◽  
Author(s):  
S Okada ◽  
H Nakauchi ◽  
K Nagayoshi ◽  
S Nishikawa ◽  
Y Miura ◽  
...  

c-kit is expressed on hematopoietic stem cells and progenitor cells, but not on lymphohematopoietic differentiated cells. Lineage marker- negative, c-kit-positive (Lin-c-kit+) bone marrow cells were fractionated by means of Ly6A/E or Sca-1 expression. Lin-c-kit+Sca-1+ cells, which consisted of 0.08% of bone marrow nucleated cells, did not contain day-8 colony-forming units-spleen (CFU-S), but 80% were day-12 CFU-S. One hundred cells rescued the lethally irradiated mice and reconstituted hematopoiesis. On the other hand, 2 x 10(3) of Lin-c- kit+Sca-1- cells formed 20 day-8 and 11 day-12 spleen colonies, but they could not rescue the lethally irradiated mice. These data indicate that Lin-c-kit+Sca-1+ cells are primitive hematopoietic stem cells and that Sca-1-cells do not contain stem cells that reconstitute hematopoiesis. Lin-c-kit+Sca-1+ cells formed no colonies in the presence of stem cell factor (SCF) or interleukin-6 (IL-6), and only 10% of them formed colonies in the presence of IL-3. However, approximately 50% of them formed large colonies in the presence of IL-3, IL-6, and SCF. Moreover, when single cells were deposited into culture medium by fluorescence-activated cell sorter clone sorting system, 40% of them proliferated on a stromal cell line (PA-6) and proliferated for more than 2 weeks. In contrast, 15% of the Lin-c- kit+Sca-1-cells formed colonies in the presence of IL-3, but no synergistic effects were observed in combination with SCF plus IL-6 and/or IL-3. Approximately 10% proliferated on PA-6, but most of them degenerated within 2 weeks. The population ratio of c-kit+Sca-1+ to c-kit+Sca-1- increased 2 and 4 days after exposure to 5-fluorouracil (5-FU). These results are consistent with the relative enrichment of highly proliferative colony-forming cells by 5-FU. These data show that, although c-kit is found both on the primitive hematopoietic stem cells and progenitors, Sca-1+ cells are more primitive and respond better than Sca-1- cells to a combination of hematopoietic factors, including SCF and stromal cells.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2576-2576
Author(s):  
Safa F. Mohamad ◽  
Joydeep Ghosh ◽  
Andrea M. Gunawan ◽  
Rachel Blosser ◽  
Malgorzata Kamocka ◽  
...  

Abstract Networking between hematopoietic stem cells (HSC) and cells of the hematopoietic niche is critical for the maintenance of stem cell renewal and function. HSC maintenance in the hematopoietic niche is considered to be the product of intimate interactions between cellular and soluble elements of the niche and stem cells. Among the cellular components of the niche participating in this function are a group of specialized bone-resident macrophages known as osteomacs (OM). Previously, we established the importance of osteoblasts (OB) in hematopoiesis and quite recently, we described the importance of OM and their interactions with OB and megakaryocytes (MK) in sustaining HSC function. We have also illustrated that CD166 is a critical functional marker of stem cell function and competence of the hematopoietic niche. Interestingly, immature OB which are CD166+ mediate the highest level of hematopoietic enhancing activity. We report here the importance of CD166 on calvarie-resident OM (identified as CD45+F4/80+ cells) and outline how these cells require cooperation from MK to increase CD166 expression and sustain HSC function. Bone resident-osteomacs, which are phenotypically similar but functionally different from bone marrow-derived macrophages, were collected by the enzymatic digestion of neonatal calvarial cells (NCC) or long bones of adult mice. Transplantation assays indicated that OM are relatively radioresistant and survive several weeks post lethal radiation. However, they eventually deplete and are replenished by progeny of donor HSC. To understand the importance of OM-OB-MK interactions in maintaining HSC function in the niche, we performed 3D cytometry on fixed and stained bone marrow sections that revealed intimate spatial interactions between OM, OB, MK and HSC. To assess changes in gene expression observed due to these interactions, we cultured NCC for 16hr in the absence or presence of MK prepared from fetal liver followed by sorting out OM from each group. These cells were then captured as single cells and sequenced to identify potential targets through which OM enhanced hematopoietic activity. Strikingly, several genes involved in the hematopoietic stem cell differentiation pathway including lmo2, fli1 and ikzf1 were upregulated in OM cultured in the presence of MK. Other genes that were upregulated were embigin and PF-4, both of which have been implicated in the maintenance of HSC function. Interestingly, OM express embigin, angiogenin and IL-18 mRNA similar to proximal osteolineage cells which we previously described as HSC regulators. To investigate changes at the translational level, we performed single cell proteomics using CyTOF. NCC were cultured for 2 days in the absence and presence of MK followed by staining for a panel of 29 surface and intracellular markers. Expression of markers such as CD166, embigin, mac-2 and STAT3 amongst others was elevated on OM cultured with MK compared to OM cultured without. These data informed our decision to focus our future investigations on CD166 and embigin. Next CD166+OM and CD166-OM were isolated by cell sorting and used in co-culture assays with OB to support the production of clonogenic cells in vitro. Only the CD166+ fraction of OM maintained hematopoietic activity similar to unsorted OM, implicating CD166 as one of the mediators of OM function. These results were validated using recombinant CD166 protein to substitute for OM function. Under these conditions, recombinant CD166 supported the hematopoietic enhancing activity of OB in the absence of OM. Recombinant Angiogenin and IL-18 were unable to augment the CD166-mediated support of hematopoiesis. Interestingly, CD166 knockout OM were unable to mediate the same hematopoietic enhancing activity observed with WT OM regardless of the presence or absence of MK in culture. In vivo transplantation studies to corroborate these findings have been initiated and are very early to yield meaningful conclusions. These data demonstrate that CD166 is one of the important mediators through which OM maintain HSC function. However, CD166-OM mediated HSC function is only maintained in conjunction with OB-MK interactions. Our data indicate the importance of crosstalk between OM, OB and MK which leads to the expression of novel mediators such as CD166 to support HSC function. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2333-2333 ◽  
Author(s):  
Nadia Quirici ◽  
Davide Soligo ◽  
Chiara Borsotti ◽  
Cinzia Scavullo ◽  
Stefano Zangrossi ◽  
...  

Abstract In a previous report we demonstrated that the immunomagnetic sorting of bone marrow (BM) cells labeled with low-affinity nerve growth factor receptor (L-NGFR) antibodies allows the selection of phenotypically and functionally homogeneous cells that are capable of expansion, self-renewal and differentiation into multiple mesenchymal cells lineages. Furthermore, we reported the presence of a subpopulation of L-NGFR+ cells coexpressing CD133 and CD34, markers associated with a primitive hematopoietic stem cell phenotype. In the present study we expanded on the phenotypic characterization of these cells and investigated their potential for multilineage differentiation. BM L-NGFR+ cells were analyzed by flow cytometry immediately after immunoseparation and the expression of a variety of stem cell markers was studied. In 12 subsequent experiments L-NGFR+ cells expressed CD45low (97.5% ±3), CD34 (19.9%±13), CD133 (10.4%±6), CD105 (46.8%±36%), P1H12 (50.5%±18), KDR (34%±18) and SSEA-3 (0.47%±0.41). In addition L-NGFR+ expressed high levels of the SCF ligand CD117 (40%±16%). As we previously demonstrated, L-NGFR antibodies identify a subpopulation of cells with a high proliferative capacity and potential for multilineage differentiation along the mesenchymal lineage. We now show, in accordance to these phenotypic data, that the L-NGFR+ cells in the presence of SCF (100 ng/ml) doubled the number of CFU-F and expanded both adipocytic and osteoblastic differentiation in comparison to mesenchymal cultures without growth factors or supplemented with Flt-3L+IL-6 (both 100 ng/ml). SCF seems therefore to act at least as a survival/proliferation factor for mesenchymal stem cells. Transdifferentiation potentialities towards endothelium were determined incubating L-NGFR+ cells in M199 supplemented with 10% FBS, 50 ng/ml VEGF, 1 ng/ml bFGF and 2 ng/ml IGF-1. At confluence, the cells were further purified using Ulex europaeus agglutinin-1 (UEA-1)-fluorescein isothiocyanate (FITC) and anti-FITC microbeads and expanded with VEGF. Immunophenotypic analysis of 8 samples showed a variable expression of endothelial markers: P1H12 ranging from 17 to 58%, CD105 from 98–100% and CD202b from 18 to 100%. L-NGFR+ cells, immediately after immunoseparation, were expressing Desmin but not MyoD, Miogenin, Mrf4, Myf5 by means of RT-PCR, while these cells were expressing NSE, TRKA and GalC, but not Nestin and GFAP. Experiments are ongoing to demonstrate muscle and neuron-glial differentiation in vitro using specific media (DMEM 10% FBS + 3 mM %-azacytidine, astrocyte conditioned media, neural stem cell conditioned media), In conclusion, the expression on NGFR+ cells of a variety of markers, not exclusively related to the mesenchymal lineage, and the reproducible ability to differentiate endothelial cells suggest that these cells may represent a subset of adult MSC with some multipotentiality.


Sign in / Sign up

Export Citation Format

Share Document