scholarly journals 5-hydroxytryptamine synthesized in the aorta-gonad-mesonephros regulates hematopoietic stem and progenitor cell survival

2016 ◽  
Vol 214 (2) ◽  
pp. 529-545 ◽  
Author(s):  
Junhua Lv ◽  
Lu Wang ◽  
Ya Gao ◽  
Yu-Qiang Ding ◽  
Feng Liu

The in vitro or ex vivo production of transplantable hematopoietic stem cells (HSCs) holds great promise for the treatment of hematological diseases in the clinic. However, HSCs have not been produced from either embryonic or induced pluripotent stem cells. In this study, we report that 5-hydroxytryptamine (5-HT; also called serotonin) can enhance the generation of hematopoietic stem and progenitor cells (HSPCs) in vitro and is essential for the survival of HSPCs in vivo during embryogenesis. In tryptophan hydroxylase 2–deficient embryos, a decrease in 5-HT synthesized in the aorta-gonad-mesonephros leads to apoptosis of nascent HSPCs. Mechanistically, 5-HT inhibits the AKT-Foxo1 signaling cascade to protect the earliest HSPCs in intraaortic hematopoietic clusters from excessive apoptosis. Collectively, our results reveal an unexpected role of 5-HT in HSPC development and suggest that 5-HT signaling may be a potential therapeutic target for promoting HSPC survival.

Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brianna J. Klein ◽  
Anagha Deshpande ◽  
Khan L. Cox ◽  
Fan Xuan ◽  
Mohamad Zandian ◽  
...  

AbstractChromosomal translocations of the AF10 (or MLLT10) gene are frequently found in acute leukemias. Here, we show that the PZP domain of AF10 (AF10PZP), which is consistently impaired or deleted in leukemogenic AF10 translocations, plays a critical role in blocking malignant transformation. Incorporation of functional AF10PZP into the leukemogenic CALM-AF10 fusion prevents the transforming activity of the fusion in bone marrow-derived hematopoietic stem and progenitor cells in vitro and in vivo and abrogates CALM-AF10-mediated leukemogenesis in vivo. Crystallographic, biochemical and mutagenesis studies reveal that AF10PZP binds to the nucleosome core particle through multivalent contacts with the histone H3 tail and DNA and associates with chromatin in cells, colocalizing with active methylation marks and discriminating against the repressive H3K27me3 mark. AF10PZP promotes nuclear localization of CALM-AF10 and is required for association with chromatin. Our data indicate that the disruption of AF10PZP function in the CALM-AF10 fusion directly leads to transformation, whereas the inclusion of AF10PZP downregulates Hoxa genes and reverses cellular transformation. Our findings highlight the molecular mechanism by which AF10 targets chromatin and suggest a model for the AF10PZP-dependent CALM-AF10-mediated leukemogenesis.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Hyun Sook Hong ◽  
Suna Kim ◽  
Youngsook Son

Bone marrow stem cells, especially, endothelial precursor cells (EPC), mesenchymal stem cells (MSC) or hematopoietic stem cell (HSC) are expected as reparative cells for the repair of a variety of tissue damages such as stroke and myocardial infarction, even though their role in the repair is not demonstrated. This report was investigated to find a role of Substance-p (SP) as a reparative agent in the tissue repair requiring EPC and MSC. In order to examine EPC (EPC SP ) and MSC (MSC SP ) mobilized by SP, we injected SP intravenously for consecutive 2 days and saline was injected as a vehicle. At 3 post injection, peripheral blood (PB) was collected.To get mesenchymal stem cells or endothelial progenitor cells, MNCs were incubated in MSCGM or EGM-2 respectively for 10 days. Functional characteristics of the EPC SP were proven by the capacity to form endothelial tubule network in the matrigel in vitro and in the matrigel plug assay in vivo. In contrast, MSC SP did not form a tube-like structure but formed a pellet-structure on matrigel. However, when both cells were premixed before the matrigel assay, much longer and branched tubular network was formed, in which a-SMA expressing MSC SP were decorating outside of the endothelial tube, especially enriched at the bifurcating point. MSC SP may contribute and reinforce elaborate vascular network formation in vivo by working as pericyte-like cells. Thus, the EPC SP and MSC SP were labeled with PKH green and PKH red respectively and their tubular network was examined. Well organized tubular network was formed, which was covered by PKH green labeled cells and was decorated in a punctate pattern by PKH red labeled cells. In order to investigate the role of EPC SP and MSC SP specifically in vivo, rabbit EPC SP and MSC SP were transplanted to full thickness skin wound. The vessel of EPC SP -transplanted groups was UEA-lectin+, which was not covered with a-SMA+ pericytes but EPC SP + MSC SP -transplanted groups showed, in part, a-SMA+ pericyte-encircled UEA-lectin+ vessels. This proved the specific role of MSC SP as pericytes. From these data, we have postulated that the collaboration of MSC and EPC is essential for normal vessel structure and furthermore, accelerated wound healing as ischemia diseases, which can be stimulated through by SP injection.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1557-1566 ◽  
Author(s):  
Stephen J. Szilvassy ◽  
Michael J. Bass ◽  
Gary Van Zant ◽  
Barry Grimes

Abstract Hematopoietic reconstitution of ablated recipients requires that intravenously (IV) transplanted stem and progenitor cells “home” to organs that support their proliferation and differentiation. To examine the possible relationship between homing properties and subsequent engraftment potential, murine bone marrow (BM) cells were labeled with fluorescent PKH26 dye and injected into lethally irradiated hosts. PKH26+ cells homing to marrow or spleen were then isolated by fluorescence-activated cell sorting and assayed for in vitro colony-forming cells (CFCs). Progenitors accumulated rapidly in the spleen, but declined to only 6% of input numbers after 24 hours. Although egress from this organ was accompanied by a simultaneous accumulation of CFCs in the BM (plateauing at 6% to 8% of input after 3 hours), spleen cells remained enriched in donor CFCs compared with marrow during this time. To determine whether this differential homing of clonogenic cells to the marrow and spleen influenced their contribution to short-term or long-term hematopoiesis in vivo, PKH26+ cells were sorted from each organ 3 hours after transplantation and injected into lethally irradiated Ly-5 congenic mice. Cells that had homed initially to the spleen regenerated circulating leukocytes (20% of normal counts) approximately 2 weeks faster than cells that had homed to the marrow, or PKH26-labeled cells that had not been selected by a prior homing step. Both primary (17 weeks) and secondary (10 weeks) recipients of “spleen-homed” cells also contained approximately 50% higher numbers of CFCs per femur than recipients of “BM-homed” cells. To examine whether progenitor homing was altered upon ex vivo expansion, highly enriched Sca-1+c-kit+Lin−cells were cultured for 9 days in serum-free medium containing interleukin (IL)-6, IL-11, granulocyte colony-stimulating factor, stem cell factor, flk-2/flt3 ligand, and thrombopoietin. Expanded cells were then stained with PKH26 and assayed as above. Strikingly, CFCs generated in vitro exhibited a 10-fold reduction in homing capacity compared with fresh progenitors. These studies demonstrate that clonogenic cells with differential homing properties contribute variably to early and late hematopoiesis in vivo. The dramatic decline in the homing capacity of progenitors generated in vitro underscores critical qualitative changes that may compromise their biologic function and potential clinical utility, despite their efficient numerical expansion.


2019 ◽  
Vol 116 (17) ◽  
pp. 8380-8389 ◽  
Author(s):  
Ralitsa R. Madsen ◽  
Rachel G. Knox ◽  
Wayne Pearce ◽  
Saioa Lopez ◽  
Betania Mahler-Araujo ◽  
...  

ThePIK3CAgene, which encodes the p110α catalytic subunit of PI3 kinase (PI3K), is mutationally activated in cancer and in overgrowth disorders known asPIK3CA-related overgrowth spectrum (PROS). To determine the consequences of geneticPIK3CAactivation in a developmental context of relevance to both PROS and cancer, we engineered isogenic human induced pluripotent stem cells (iPSCs) with heterozygous or homozygous knockin ofPIK3CAH1047R. While heterozygous iPSCs remained largely similar to wild-type cells, homozygosity forPIK3CAH1047Rcaused widespread, cancer-like transcriptional remodeling, partial loss of epithelial morphology, up-regulation of stemness markers, and impaired differentiation to all three germ layers in vitro and in vivo. Genetic analysis ofPIK3CA-associated cancers revealed that 64% had multiple oncogenicPIK3CAcopies (39%) or additional PI3K signaling pathway-activating “hits” (25%). This contrasts with the prevailing view thatPIK3CAmutations occur heterozygously in cancer. Our findings suggest that a PI3K activity threshold determines pathological consequences of oncogenicPIK3CAactivation and provide insight into the specific role of this pathway in human pluripotent stem cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 95-95 ◽  
Author(s):  
Keisuke Ito ◽  
Paolo Sportoletti ◽  
John G Clohessy ◽  
Grisendi Silvia ◽  
Pier Paolo Pandolfi

Abstract Abstract 95 Myelodysplastic syndrome (MDS) is an incurable stem cell disorder characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Nucleophosmin (NPM) is directly implicated in primitive hematopoiesis, the pathogenesis of hematopoietic malignancies and more recently of MDS. However, little is known regarding the molecular role and function of NPM in MDS pathogenesis and in stem cell biology. Here we present data demonstrating that NPM plays a critical role in the maintenance of hematopoietic stem cells (HSCs) and the transformation of MDS into leukemia. NPM is located on chromosome 5q and is frequently lost in therapy-related and de novo MDS. We have previously shown that Npm1 acts as a haploinsufficient tumor suppressor in the hematopoietic compartment and Npm1+/− mice develop a hematologic syndrome with features of human MDS, including increased susceptibility to leukemogenesis. As HSCs have been demonstrated to be the target of the primary neoplastic event in MDS, a functional analysis of the HSC compartment is essential to understand the molecular mechanisms in MDS pathogenesis. However, the role of NPM in adult hematopoiesis remains largely unknown as Npm1-deficiency leads to embryonic lethality. To investigate NPM function in adult hematopoiesis, we have generated conditional knockout mice of Npm1, using the Cre-loxP system. Analysis of Npm1 conditional mutants crossed with Mx1-Cre transgenic mice reveals that Npm1 plays a crucial role in adult hematopoiesis and ablation of Npm1 in adult HSCs leads to aberrant cycling and followed by apoptosis. Analysis of cell cycle status revealed that HSCs are impaired in their ability to maintain quiescence after Npm1-deletion and are rapidly depleted in vivo as well as in vitro. Competitive reconstitution assay revealed that Npm1 acts cell-autonomously to maintain HSCs. Conditional inactivation of Npm1 leads to an MDS phenotype including a profoundly impaired ability to differentiate into cells of the erythroid lineage, megakaryocyte dyspoiesis and centrosome amplification. Furthermore, Npm1 loss evokes a p53-dependent response and Npm1-deleted HSCs undergo apoptosis in vivo and in vitro. Strikingly, transfer of the Npm1 mutation into a p53-null background rescued the apoptosis of Npm1-ablated HSCs and resulted in accelerated transformation to an aggressive and lethal form of acute myeloid leukemia. Our findings highlight the crucial role of NPM in stem cell biology and identify a new mechanism by which MDS can progress to leukemia. This has important therapeutic implications for de novo MDS as well as therapy-related MDS, which is known to rapidly evolve to leukemia with frequent loss or mutation of TRP53. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 779-779
Author(s):  
Maegan L. Capitano ◽  
Nirit Mor-Vaknin ◽  
Maureen Legendre ◽  
Scott Cooper ◽  
David Markovitz ◽  
...  

Abstract DEK is a nuclear DNA-binding protein that has been implicated in the regulation of transcription, chromatin remodeling, and mRNA processing. Endogenous DEK regulates hematopoiesis, as BM from DEK-/- mice manifest increased hematopoietic progenitor cell (HPC) numbers and cycling status and decreased long-term and secondary hematopoietic stem cell (HSC) engrafting capability (Broxmeyer et al., 2012, Stem Cells Dev., 21: 1449; 2013, Stem Cells, 31: 1447). Moreover, recombinant mouse (rm) DEK inhibits HPC colony formation in vitro. We now show that rmDEK is myelosuppressive in vitro in an S-phase specific manner and reversibly decreases numbers (~2 fold) and cycling status of CFU-GM, BFU-E, and CFU-GEMM in vivo, with DEK-/- mice being more sensitive than control mice to this suppression. In contrast, in vivo administration of rmDEK to wild type and DEK-/- mice enhanced numbers of phenotypic LT-HSC. This suggests that DEK may enhance HSC numbers by blocking production of HPCs. We thus assessed effects of DEK on ex vivo expansion of human CD34+ cord blood (CB) and mouse Lin- BM cells stimulated with SCF, Flt3 ligand, and TPO. DEK significantly enhanced ex vivo expansion of rigorously-defined HSC by ~3 fold both on day 4 (~15 fold increase from day 0) and 7 (~29 fold increase from day 0) when compared to cells expanded without DEK. Expanding HSC with DEK also resulted in a decrease in the percentage of apoptotic HSC. Further studies were done to better define how DEK works on HSC and HPC. As extracellular DEK can bind to heparan sulfate proteoglycans (HSPG), become internalized, and then remodel chromatin in non-hematopoietic cells in vitro (Kappes et al., 2011, Genes Dev., 673; Saha et al., 2013, PNAS, 110: 6847), we assessed effects of DEK on the heterochromatin marker H3K9He3 in the nucleus of purified mouse lineage negative, Sca-1 positive, c-Kit positive (LSK) BM cells by imaging flow cytometry. DEK enhanced the presence of H3K9Me3 in the nucleus of DEK-/- LSK cells, indicating that rmDEK can be internalized by LSK cells and mediate heterochromatin formation. We also investigated whether inhibiting DEK's ability to bind to HSPG would block the inhibitory function of DEK in HPC. Blocking the synthesis of, the surface expression of, and the binding capability of HSPG blocked the inhibitory effect of DEK on colony formation. Blocking the ability of DEK to bind to HSPG also blocks the expansion of HSC in ex vivo expansion assays, suggesting that DEK mediates its function in both HSC and HPC by binding to HSPG but with opposing effects. To further evaluate the biological role of rmDEK, we utilized single-stranded anti-DEK aptamers that inactivate its function. These aptamers, but not their control, neutralized the inhibitory effect of rmDEK on HPC colony formation. Moreover, treating BM cells in vitro with truncated rmDEK created by incubating DEK with the enzyme DPP4 (DEK has targeted truncation sites for DPP4) eliminated the inhibitory effects of DEK, suggesting that DEK must be in its full- length form in order to perform its function. Upon finding that DEK has a Glu-Leu-Arg (ELR) motif, similar to that of CXC chemokines such as IL-8, and as DEK is a chemoattractant for mature white blood cells, we hypothesized that DEK may manifest at least some of its actions through CXCR2, the receptor known to bind and mediate the actions of IL-8 and MIP-2. In order to examine if this is indeed the case, we first confirmed expression of CXCR2 on the surface of HSC and HPC and then determined if neutralizing CXCR2 could block DEK's inhibitory function in HPC. BM treated in vitro with rmDEK, rhIL-8, or rmMIP-2 inhibited colony formation; pretreating BM with neutralizing CXCR2 antibodies blocked the inhibitory effect of these proteins. DEK inhibition of CFU-GM colony formation is dependent on Gai-protein-coupled receptor signaling as determined through the use of pertussis toxin, which is a mechanism unique to DEK, as we have previously reported that IL-8 and MIP-1a are insensitive to the inhibitory effects of pertussis toxin. Blocking the ability of DEK to bind to CXCR2 also inhibited the expansion of HSC in an ex vivo expansion assay. This suggests that DEK binds to CXCR2, HSPG or both to mediate its function on HPC and HSC, enhancing HSC but decreasing HPC numbers. Therefore, DEK may be a crucial regulatory determinant of HSC/HPC function and fate decision that is utilized to enhance ex vivo expansion of HSC. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (10) ◽  
pp. 2733-2742 ◽  
Author(s):  
Cristina Mazzon ◽  
Achille Anselmo ◽  
Javier Cibella ◽  
Cristiana Soldani ◽  
Annarita Destro ◽  
...  

Abstract Hematopoiesis is the process leading to the sustained production of blood cells by hematopoietic stem cells (HSCs). Growth, survival, and differentiation of HSCs occur in specialized microenvironments called “hematopoietic niches,” through molecular cues that are only partially understood. Here we show that agrin, a proteoglycan involved in the neuromuscular junction, is a critical niche-derived signal that controls survival and proliferation of HSCs. Agrin is expressed by multipotent nonhematopoietic mesenchymal stem cells (MSCs) and by differentiated osteoblasts lining the endosteal bone surface, whereas Lin−Sca1+c-Kit+ (LSK) cells express the α-dystroglycan receptor for agrin. In vitro, agrin-deficient MSCs were less efficient in supporting proliferation of mouse Lin−c-Kit+ cells, suggesting that agrin plays a role in the hematopoietic cell development. These results were indeed confirmed in vivo through the analysis of agrin knockout mice (Musk-L;Agrn−/−). Agrin-deficient mice displayed in vivo apoptosis of CD34+CD135− LSK cells and impaired hematopoiesis, both of which were reverted by an agrin-sufficient stroma. These data unveil a crucial role of agrin in the hematopoietic niches and in the cross-talk between stromal and hematopoietic stem cells.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 721-723 ◽  
Author(s):  
Hartmut Geiger ◽  
Jarrod M. True ◽  
Barry Grimes ◽  
Elizabeth J. Carroll ◽  
Roger A. Fleischman ◽  
...  

Abstract Cells in murine muscle have been reported to differentiate into hematopoietic stem and progenitor cells and thus repopulate the hematopoietic system of an irradiated animal. This activity was attributed to muscle stem cells. We used an in vitro and in vivo approach to identify the hematopoietic repopulating activity found in muscle tissue of mice by antibody staining and cell sorting. We confirmed existence of a hematopoietic repopulating cell in muscle tissue, but the data strongly suggest that repopulation is due not to muscle stem cells but to hematopoietic cells present in muscle tissue. Unexpectedly, the blood-forming cells were enriched in muscle relative to their frequency in peripheral blood.


Sign in / Sign up

Export Citation Format

Share Document