scholarly journals Regulation by Na+ and Ca2+ of renal epithelial Na+ channels reconstituted into planar lipid bilayers.

1995 ◽  
Vol 106 (3) ◽  
pp. 445-466 ◽  
Author(s):  
I I Ismailov ◽  
B K Berdiev ◽  
D J Benos

Purified bovine renal epithelial Na+ channels when reconstituted into planar lipid bilayers displayed a specific orientation when the membrane was clamped to -40 mV (cis-side) during incorporation. The trans-facing portion of the channel was extracellular (i.e., amiloride-sensitive), whereas the cis-facing side was intracellular (i.e., protein kinase A-sensitive). Single channels had a main state unitary conductance of 40 pS and displayed two subconductive states each of 12-13 pS, or one of 12-13 pS and the second of 24-26 pS. Elevation of the [Na+] gradient from the trans-side increased single-channel open probability (Po) only when the cis-side was bathed with a solution containing low [Na+] (< 30 mM) and 10-100 microM [Ca2+]. Under these conditions, Po saturated with increasing [Na+]trans. Buffering of the cis compartment [Ca2+] to nearly zero (< 1 nM) with 10 mM EGTA increased the initial level of channel activity (Po = 0.12 +/- 0.02 vs 0.02 +/- 0.01 in control), but markedly reduced the influence of both cis- and trans-[Na+] on Po. Elevating [Ca2+]cis at constant [Na+] resulted in inhibition of channel activity with an apparent [KiCa2+] of 10-100 microM. Protein kinase C-induced phosphorylation shifted the dependence of channel Po on [Ca2+]cis to 1-3 microM at stationary [Na+]. The direct modulation of single-channel Po by Na+ and Ca2+ demonstrates that the gating of amiloride-sensitive Na2+ channels is indeed dependent upon the specific ionic environment surrounding the channels.

1998 ◽  
Vol 330 (1) ◽  
pp. 559-564 ◽  
Author(s):  
C. Edwin THROWER ◽  
J. A. Edward LEA ◽  
P. Alan DAWSON

Cytosolic free Ca2+ has been shown to have both activating and inhibitory effects upon the inositol (1,4,5) trisphosphate receptor (InsP3R) during intracellular Ca2+ release. The effects of cytosolic free Ca2+ on the InsP3R have already been monitored using cerebellar microsomes (containing InsP3R) incorporated into planar lipid bilayers [Bezprozvanny, Watras and Ehrlich (1991) Nature (London) 351, 751-754]. In these experiments the open probability of the channel exhibited a ‘bell-shaped Ca2+ dependence’. However, this has only been seen when the receptor is in the presence of its native membrane (e.g. microsomal vesicles). Using solubilized, purified InsP3R incorporated into planar lipid bilayers using the ‘tip-dip’ technique, investigations were carried out to see if the same effect was seen in the absence of the native membrane. Channel activity was observed in the presence of 4 μM InsP3 and 200 nM free Ca2+. Mean single channel current was 2.69 pA and more than one population of lifetimes was observed. Two populations had mean open times of approx. 9 and 97 ms. Upon increasing the free [Ca2+] to 2 μM, the mean single channel current decreased slightly to 2.39 pA, and the lifetimes increased to 30 and 230 ms. Elevation of free [Ca2+] to 4 μM resulted in a further decrease in mean single channel current to 1.97 pA as well as a decrease in lifetime to approx. 8 and 194 ms. At 10 μM free [Ca2+] no channel activity was observed. Thus, with purified receptor in artificial bilayers, free [Ca2+] on the cytosolic face of the receptor has major effects on channel behaviour, particularly on channel closure, although inhibition of channel activity is not seen until very high free [Ca2+] is reached.


1996 ◽  
Vol 270 (6) ◽  
pp. C1675-C1686 ◽  
Author(s):  
J. I. Kourie ◽  
D. R. Laver ◽  
G. P. Ahern ◽  
A. F. Dulhunty

A Ca(2+)-activated Cl- channel is described in sarcoplasmic reticulum (SR) enriched vesicles of skeletal muscle incorporated into lipid bilayers. Small chloride (SCl) channels (n = 20) were rapidly and reversibly activated when cis- (cytoplasmic) [Ca2+] was increased above 10(-7) M, with trans-(luminal) [Ca2+] at either 10(-3) or 10(-7) M. The open probability of single channels increased from zero when cis-[Ca2+] was 10(-7) M to 0.61 +/- 0.12 when [Ca2+] was 10(-4) M. High- and low-conductance levels in single-channel activity were activated at different cis-[Ca2+]. Channel openings to the maximum conductance, 65-75 pS (250/50 mM Cl-, cis/ trans), were active when cis-[Ca2+] was increased above 5 x 10(-6) M. In contrast to the maximum conductance, channel openings to submaximal levels between 5 and 40 pS were activated at a lower cis-[Ca2+] and dominated channel activity between 5 x 10(-7) and 5 x 10(-6) M. Activation of SCl channels was Ca2+ specific and not reproduced by cytoplasmic Mg2+ concentrations of 10(-3) M. We suggest that the SCl channel arises in the SR membrane. The Ca2+ dependence of this channel implies that it is active at [Ca2+] achieved during muscle contraction.


1997 ◽  
Vol 272 (4) ◽  
pp. C1262-C1270 ◽  
Author(s):  
B. K. Berdiev ◽  
V. G. Shlyonsky ◽  
O. Senyk ◽  
D. Keeton ◽  
Y. Guo ◽  
...  

Protein kinase A (PKA)- and G protein-mediated regulation of immunopurified adult rabbit alveolar epithelial type II (ATII) cell proteins that exhibit amiloride-sensitive Na+ channel activity was studied in planar lipid bilayers and freshly isolated ATII cells. Addition of the catalytic subunit of PKA + ATP increased single channel open probability from 0.42 +/- 0.05 to 0.82 +/- 0.07 in a voltage-independent manner, without affecting unitary conductance. This increase in open probability of the channels was mainly due to a decrease in the time spent by the channel in its closed state. The apparent inhibition constant for amiloride increased from 8.0 +/- 1.8 microM under control conditions to 15 +/- 3 microM after PKA-induced phosphorylation; that for ethylisopropylamiloride increased from 1.0 +/- 0.4 to 2.0 +/- 0.5 microM. Neither pertussis toxin (PTX) nor guanosine 5'-O-(3-thiotriphosphate) affected ATII Na+ channel activity in bilayers. Moreover, PTX failed to affect amiloride-inhibitable 22Na+ uptake in freshly isolated ATII cells. In vitro, ADP ribosylation induced by PTX revealed the presence of a specifically ribosylated band at 40-45 kDa in the total solubilized ATII cell protein fraction, but not in the immunopurified fraction. Moreover, the immunopurified channel was downregulated in response to guanosine 5'-O-(3-thiotriphosphate)-mediated activation of the exogenous G alpha(i-2), but not G(oA), G alpha(i-1), or G alpha(i-3), protein added to the channel. This effect occurred only in the presence of actin. These results suggest that amiloride-sensitive Na+ channels in adult alveolar epithelia regulated by PKA-mediated phosphorylation also retain the ability to be regulated by G alpha([i-2), but not G alpha([i-1) or G alpha(i-3), protein.


1997 ◽  
Vol 273 (2) ◽  
pp. H796-H804 ◽  
Author(s):  
C. Valdivia ◽  
J. O. Hegge ◽  
R. D. Lasley ◽  
H. H. Valdivia ◽  
R. Mentzer

We investigated the effects of myocardial stunning on the function of the two main Ca2+ transport proteins of the sarcoplasmic reticulum (SR), the Ca(2+)-adenosinetriphosphatase and the Ca(2+)-release channel or ryanodine receptor. Regional myocardial stunning was induced in open-chest pigs (n = 6) by a 10-min occlusion of the left anterior descending coronary artery (LAD) and 2 h reperfusion. SR vesicles isolated from the LAD-perfused region (stunned) and the normal left circumflex coronary artery (LC)-perfused region were used to assess the oxalate-supported 45Ca2+ uptake, [3H]ryanodine binding, and single-channel recordings of ryanodine-sensitive Ca(2+)-release channels in planar lipid bilayers. Myocardial stunning decreased LAD systolic wall thickening to 20% of preischemic values. The rate of SR 45Ca2+ uptake in the stunned LAD bed was reduced by 37% compared with that of the normal LC bed (P < 0.05). Stunning was also associated with a 38% reduction in the maximal density of high-affinity [3H]ryanodine binding sites (P < 0.05 vs. normal LC) but had no effect on the dissociation constant. The open probability of ryanodine-sensitive Ca(2+)-release channels determined by single channel recordings in planar lipid bilayers was 26 +/- 2% for control SR (n = 33 channels from 3 animals) and 14 +/- 2% for stunned SR (n = 21 channels; P < 0.05). This depressed activity of SR function observed in postischemic myocardium could be one of the mechanisms underlying myocardial stunning.


1999 ◽  
Vol 274 (53) ◽  
pp. 37845-37854 ◽  
Author(s):  
Biljana Jovov ◽  
Albert Tousson ◽  
Hong-Long Ji ◽  
Deborah Keeton ◽  
Vadim Shlyonsky ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Mohamed Chahine ◽  
Yongxia Qu ◽  
Mohamed Boutjdir

The recently reported α 1D calcium channel in the heart is known to be regulated by protein kinase C (PKC) at the whole cell level and has been implicated in atrial fibrillation. The biophysical basis of this regulation at the single channel level is not known. Therefore, the effect of PKC activation was studied on α 1D calcium channel expressed in tsA201 cells using cell-attached method. Unitary currents were recorded in the presence of 70 mM Ba 2+ as the charge carrier. Unitary currents were evoked by 500 ms depolarizing pulses from a holding potential of −80 mV every 0.5 Hz. Under basal condition, channel activity was rare and infrequent, however Bay K 8644 (1 μM) induced channel openings with a conductance of 22.3 pS. Single channel analysis of open and closed time distributions were best fitted with a single exponential. PKC activation by PMA (10 nM), a phorbol ester derivative, resulted in a decrease in open probability and increase in closed-time without any significant effect on the conductance of the α 1D calcium channel. This is consistent with a decreased entry of α 1D Ca channel into open states in the presence of PMA. These data show, for the fist time, 1) the α 1D calcium channel activity at the single channel level and 2) the biophysical basis of by which PKC activation inhibits the α 1D calcium channel. The shortening of the open-time and the lengthening of the closed-time constants and the increase in blank sweeps may explain the inhibition of the α 1D Ca-channel activity and the reduction in whole-cell α 1D Ca current previously reported. Altogether, these data are relevant to the understanding of the patho-physiology of α 1D calcium channel and its regulation by the autonomics.


1996 ◽  
Vol 108 (1) ◽  
pp. 49-65 ◽  
Author(s):  
M S Awayda ◽  
I I Ismailov ◽  
B K Berdiev ◽  
C M Fuller ◽  
D J Benos

We examined the regulation of a cloned epithelial Na+ channel (alpha beta gamma-rENaC) by protein kinase A (PKA) and protein kinase C (PKC). Experiments were performed in Xenopus oocytes and in planar lipid bilayers. At a holding potential of -100 mV, amiloride-sensitive current averaged -1,279 +/- 111 nA (n = 7) in alpha beta gamma-rENaC-expressing oocytes. Currents in water-injected oocytes were essentially unresponsive to 10 microM amiloride. A 1-h stimulation of PKC with 100 nM of PMA inhibited whole-cell currents in Xenopus oocytes to 17.1 +/- 1.8, and 22.1 +/- 2.6% of control (n = 7), at holding potentials of -100 and +40 mV, respectively. Direct injection of purified PKC resulted in similar inhibition to that observed with PMA. Additionally, the inactive phorbol ester, phorbol-12-myristate-13-acetate, 4-O-methyl, was without effect on alpha beta gamma-rENaC currents. Pretreatment with the microtubule inhibitor colchicine (100 microM) did not modify the inhibitory effect of PMA; however, pretreatment with 20 microM cytochalasin B decreased the inhibitory action of PMA to &lt; 20% of that previously observed. In vitro-synthesized alpha beta gamma-rENaC formed an amiloride-sensitive Na(+)-selective channel when incorporated into planar lipid bilayers. Addition of PKC, diacyl-glycerol, and Mg-ATP to the side opposite that which amiloride blocked, decreased the channel's open probability (Po) from 0.44 +/- 0.06 to 0.13 +/- 0.03 (n = 9). To study the effects of PKA on alpha beta gamma-rENaC expressed in Xenopus oocytes, cAMP levels were elevated with 10 microM forskolin and 1 mM isobutyl-methyl-xanthine. This cAMP-elevating cocktail did not cause any stimulation of alpha beta gamma-rENaC currents in either the inward or outward directions. This lack of activation was also observed in oocytes preinhibited with PMA and in oocytes pretreated with cytochalasin B and PMA. Neither alpha-rENaC nor alpha beta gamma-rENaC incorporated into planar lipid bilayers could be activated with PKA and Mg-ATP added to either side of the membrane, as Po remained at 0.63 +/- 0.06 (n = 7) and 0.45 +/- 0.05 (n = 9), respectively. We conclude that: alpha beta gamma-rENaC is inhibited by PKC, and that alpha beta gamma-rENaC is not activated by PKA.


1984 ◽  
Vol 84 (5) ◽  
pp. 665-686 ◽  
Author(s):  
E Moczydlowski ◽  
S S Garber ◽  
C Miller

Single Na+ channels from rat skeletal muscle plasma membrane vesicles were inserted into planar lipid bilayers formed from neutral phospholipids and were observed in the presence of batrachotoxin. The batrachotoxin-modified channel activates in the voltage range -120 to -80 mV and remains open almost all the time at voltages positive to -60 mV. Low levels of tetrodotoxin (TTX) induce slow fluctuations of channel current, which represent the binding and dissociation of single TTX molecules to single channels. The rates of association and dissociation of TTX are both voltage dependent, and the association rate is competitively inhibited by Na+. This inhibition is observed only when Na+ is increased on the TTX binding side of the channel. The results suggest that the TTX receptor site is located at the channel's outer mouth, and that the Na+ competition site is not located deeply within the channel's conduction pathway.


1997 ◽  
Vol 272 (2) ◽  
pp. C622-C627 ◽  
Author(s):  
T. Oba ◽  
M. Koshita ◽  
M. Yamaguchi

When sarcoplasmic reticulum (SR) vesicles prepared from frog skeletal muscles were actively loaded with Ca2+, pretreatment of the SR with 2.2 mM (0.01%) ethanol for 30 s significantly potentiated 5 mM caffeine-induced release of Ca2+ from 16.7 +/- 3.7 nmol/mg protein in control without ethanol to 28.0 +/- 2.6 nmol/mg (P < 0.05, n = 5). Ethanol alone caused no release of Ca2+ from the SR. Exposure of the Ca2+-release channel, incorporated into planar lipid bilayers, to 2 mM caffeine significantly increased open probability (Po) and mean open time, but unitary conductance was not affected. Ethanol (2.2 mM) enhanced caffeine-induced Ca2+-release channel activity, with Po reaching 3.02-fold and mean open time 2.85-fold the values in the absence of ethanol. However, ethanol alone did not affect electrical parameters of single-channel current, over a concentration range of 2.2 mM (0.01%) to 217 mM (1%). The synergistic action of ethanol and caffeine on the channel activity could be attributable to enhancement of caffeine-induced release of Ca2+ from the SR vesicles in the presence of ethanol.


1993 ◽  
Vol 264 (6) ◽  
pp. C1473-C1479 ◽  
Author(s):  
Y. Wang ◽  
C. Townsend ◽  
R. L. Rosenberg

We have studied the effects of activated G proteins (Gs alpha and Gi1 alpha), adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA), and okadaic acid on L-type Ca channels incorporated from porcine ventricular sarcolemma into planar lipid bilayers. Channel activity evoked by membrane depolarizations diminished to extremely low levels within 2 min of incorporation (channel "rundown"). When Gs alpha [activated with guanosine 5'-O-(3-thiotriphosphate)] was present in the intracellular chamber, the initial level of channel activity was increased and rundown was delayed, so that channel activity was sustained for longer times after incorporation. The effect was specific for activated Gs alpha; activated Gi1 alpha, heat-denatured, activated Gs alpha, and unactivated Gs alpha did not augment channel activity. Activated Gi1 alpha inhibited the stimulation of Ca channel activity by Gs alpha. Treatment of the sarcolemmal membranes with PKA and Mg-ATP also increased the initial channel open probability and delayed their rundown. Addition of intracellular Gs alpha to PKA-treated channels increased the initial level of activity above that seen with PKA or Gs alpha alone, suggesting different nonocclusive pathways for the channel stimulation. This was also supported by the observation that activated Gi1 alpha had no effect on PKA-treated channels. Okadaic acid (100 nM) increased the level of Ca channel activity, suggesting that dephosphorylation by endogenous phosphatases participated in the downregulation of the channels in cell-free membranes.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document