epithelial na channels
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 6)

H-INDEX

36
(FIVE YEARS 1)

2021 ◽  
Vol 153 (8) ◽  
Author(s):  
Lei Yang ◽  
Yuanyuan Xu ◽  
Diego Gravotta ◽  
Gustavo Frindt ◽  
Alan M. Weinstein ◽  
...  

We measured the activities of epithelial Na channels (ENaC) and ROMK channels in the distal nephron of the mouse kidney and assessed their role in the process of K+ secretion under different physiological conditions. Under basal dietary conditions (0.5% K), ENaC activity, measured as amiloride-sensitive currents, was high in cells at the distal end of the distal convoluted tubule (DCT) and proximal end of the connecting tubule (CNT), a region we call the early CNT (CNTe). In more distal parts of the CNT (aldosterone-sensitive portion [CNTas]), these currents were minimal. This functional difference correlated with alterations in the intracellular location of ENaC, which was at or near the apical membrane in CNTe and more cytoplasmic in the CNTas. ROMK activity, measured as TPNQ-sensitive currents, was substantial in both segments. A mathematical model of the rat nephron suggested that K+ secretion by the CNTe predicted from these currents provides much of the urinary K+ required for K balance on this diet. In animals fed a K-deficient diet (0.1% K), both ENaC and ROMK currents in the CNTe decreased by ∼50%, predicting a 50% decline in K+ secretion. Enhanced reabsorption by a separate mechanism is required to avoid excessive urinary K+ losses. In animals fed a diet supplemented with 3% K, ENaC currents increased modestly in the CNTe but strongly in the CNTas, while ROMK currents tripled in both segments. The enhanced secretion of K+ by the CNTe and the recruitment of secretion by the CNTas account for the additional transport required for K balance. Therefore, adaptation to increased K+ intake involves the extension of robust K+ secretion to more distal parts of the nephron.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Liping Zhang ◽  
Yan Yang ◽  
Annayya Aroor ◽  
Guanghong Jia ◽  
Zhe Sun ◽  
...  

The deoxycortisone acetate (DOCA)/salt model of hypertension and vascular disease replicates a situation of high aldosterone and high salt consumption in humans. We hypothesized that in this model, increased mineralocorticoid receptor (MR) activation would result in increased activity of the endothelial cell sodium channel (EnNaC) leading to increased endothelial cell and vascular stiffness. Female and male mice were implanted with slow release DOCA pellets (50 mg) and given salt in their drinking water (1% NaCl with 0.2% KCl) for 21 days. To probe signaling pathways underlying EnNaC activation induced endothelial cell stiffness we used mice with a specific deletion of the alpha subunit of EnNaC (EnNaC KO) and mice treated with a pharmacological inhibitor of mTORC2 (PP242, 10 mg/kg/day; mTI). Indeed, mTORC2 activation has been shown to increase SGK1 mediated activation of the epithelial Na+ channels in renal epithelial cells (Gleason et al., J. Clin. Invest. 2015). DOCA-salt treated control mice showed an increase in blood pressure and aortic vascular stiffness (ECHO PW analysis) which was attenuated in both the EnNaC KO and mTI-treated groups. Similarly, DOCA-salt administration increased endothelial cell Na + transport activity as measured by whole cell patch clamp. The Na + conductance was blocked by amiloride consistent with a role for the EnNaC ion channel. Further, intrinsic endothelial cell stiffness as measured by AFM was decreased in EnNaC KO and mTI-treated mice compared to control mice given DOCA-salt, alone. Collectively, the data indicate that in the presence of MR activation and high salt consumption, that activation of EnNaC contributes to endothelial cell and vascular stiffness. This appears to involve a contribution of mTOR signaling which is known to stimulate SGK1 mediated increases in the Na + channel at the EC surface and associated increased channel activity. We further conclude that the data are relevant to situations of enhanced aldosterone secretion and MR activation in concert with high salt consumption (ie. salt sensitivitive and resistant hypertension).


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Fred I Chasalow ◽  
Ron Bochner

Abstract Background: In 1987, Graves observed that during the 3rd trimester, some patients with pre-eclampsia had high levels of unknown materials that could be detected with assays for digoxin (DLM). In 2018, we characterized a new candidate for the DLM, Ionotropin. It is a phosphocholine (PC) ester of a novel steroid with 23 carbon atoms. As Ionotropin shares structural features (a) with spironolactone (both have spiral lactones in the E-ring) and (b) with digoxin (E-ring lactone and 3α-5β configuration), we have proposed that Ionotropin may function as a potassium (K+) sparing diuretic. This suggestion is supported by the observations that [1] patients who cannot make Ionotropin (7-dehydrosterol reductase deficiency) are K+ wasting and [2] breast cyst fluids with high K+ levels also have high Ionotropin levels. Hypothesis: During the 3rd trimester, fetal requirements for K+ reach a maximum, fetal blood pressure increases and aldosterone signaling is blocked. This blockage leads to fetal sodium (Na+) wasting and is essential for formation of amniotic fluid. These events are consistent with a normal role for an unknown endogenous K+ sparing hormone and would be the basis for a modest elevation of maternal DLM during the 3rd trimester. Our hypothesis is that if any of the functions were inadequate, then the fetal-placental unit would synthesize excess PC-spiral steroids; the woman would exhibit symptoms of K+ sparing hormone excess (hypertension and proteinuria) and would be diagnosed with pre-eclampsia. Experimental Results: We have just reported a pilot study associating elevated PC esters of spiral steroids in women with pre-eclampsia. In brief, 12 of 19 women had elevated levels of at least one of the PC steroids (Z-score > 2) when compared to the levels in 20 pregnant women matched for gestational age and fetal sex. There are two basic mechanisms for this dichotomy: (a) there may be episodic secretion with of a DLM with a short half-life or (b) there may be two different underlying biochemical causes. In prior studies, there has been no indication of episodic secretion of DLM similar to that observed with glucocorticoids, Ionotropin or other PC spiral steroids. Discussion: There are two basic types of K+ sparing diuretics. Type A: Spironolactone functions by regulating the NaK-ATPase. Type B: Triamterene functions by blocking synthesis of epithelial Na+ channels. Thus, Type A would have high levels of spiral steroids and Type B would have low levels of spiral steroids. Type A patients would be expected to have higher risk of long-term consequences when compared to the Type B patients. Conclusion: The recognition of the division of pre-eclampsia into two separate diseases might be the key observation for developing Type-specific diagnosis and therapy. For example, a Type A patient might benefit from a low salt diet but that diet would not be expected to benefit a patient with Type B disease.


2019 ◽  
Vol 152 (1) ◽  
Author(s):  
Donald W. Hilgemann

All cells must control the activities of their ion channels and transporters to maintain physiologically appropriate gradients of solutes and ions. The complexity of underlying regulatory mechanisms is staggering, as exemplified by insulin regulation of transporter trafficking. Simpler strategies occur in single-cell organisms, where subsets of transporters act as solute sensors to regulate expression of their active homologues. This Viewpoint highlights still simpler mechanisms by which Na transporters use their own transport sites as sensors for regulation. The underlying principle is inherent to Na/K pumps in which aspartate phosphorylation and dephosphorylation are controlled by occupation of transport sites for Na and K, respectively. By this same principle, Na binding to transport sites can control intrinsic inactivation reactions that are in turn modified by extrinsic signaling factors. Cardiac Na/Ca exchangers (NCX1s) and Na/K pumps are the best examples. Inactivation of NCX1 occurs when cytoplasmic Na sites are fully occupied and is regulated by lipid signaling. Inactivation of cardiac Na/K pumps occurs when cytoplasmic Na-binding sites are not fully occupied, and inactivation is in turn regulated by Ca signaling. Potentially, Na/H exchangers (NHEs) and epithelial Na channels (ENaCs) are regulated similarly. Extracellular protons and cytoplasmic Na ions oppose secondary activation of NHEs by cytoplasmic protons. ENaCs undergo inactivation as cytoplasmic Na rises, and small diffusible molecules of an unidentified nature are likely involved. Multiple other ion channels have recently been shown to be regulated by transiting ions, thereby underscoring that ion permeation and channel gating need not be independent processes.


2019 ◽  
Vol 21 (1) ◽  
pp. 57
Author(s):  
Mandy Laube ◽  
Diana Riedel ◽  
Benjamin Ackermann ◽  
Melanie Haase ◽  
Ulrich H. Thome

Preterm infants frequently suffer from respiratory distress syndrome (RDS), possibly due to lower expression of epithelial Na+ channels (ENaC). RDS incidence is sex-specific, affecting males almost twice as often. Despite the use of antenatal glucocorticoids (GCs), the sex difference persists. It is still controversial whether both sexes benefit equally from GCs. We previously showed that Na+ transport is higher in female compared with male fetal distal lung epithelial (FDLE) cells. Since GCs increase Na+ transport, we hypothesized that their stimulating effect might be sex-specific. We analyzed FDLE cells with Ussing chambers and RT-qPCR in the presence or absence of fetal serum. In serum-free medium, GCs increased the ENaC activity and mRNA expression, independent of sex. In contrast, GCs did not increase the Na+ transport in serum-supplemented media and abolished the otherwise observed sex difference. Inhibition of the GC receptor in the presence of serum did not equalize Na+ transport between male and female cells. The GC-induced surfactant protein mRNA expression was concentration and sex-specific. In conclusion, female and male FDLE cells exhibit no sex difference in response to GCs with regard to Na+ transport, and GR activity does not contribute to the higher Na+ transport in females.


2018 ◽  
Vol 6 (16) ◽  
pp. e13838 ◽  
Author(s):  
Natalie J. Mills ◽  
Kaustubh Sharma ◽  
Katie Huang ◽  
Ryoichi Teruyama

2018 ◽  
Vol 150 (8) ◽  
pp. 1179-1187 ◽  
Author(s):  
Pradeep Kota ◽  
Martina Gentzsch ◽  
Yan L. Dang ◽  
Richard C. Boucher ◽  
M. Jackson Stutts

Epithelial Na+ channels comprise three homologous subunits (α, β, and γ) that are regulated by alternative splicing and proteolytic cleavage. Here, we determine the basis of the reduced Na+ current (INa) that results from expression of a previously identified, naturally occurring splice variant of the α subunit (α-ENaC), in which residues 34–82 are deleted (αΔ34–82). αΔ34–82-ENaC expression with WT β and γ subunits in Xenopus oocytes produces reduced basal INa, which can largely be recovered by exogenous trypsin. With this αΔ34–82-containing ENaC, both α and γ subunits display decreased cleavage fragments, consistent with reduced processing by furin or furin-like convertases. Data using MTSET modification of a cysteine, introduced into the degenerin locus in β-ENaC, suggest that the reduced INa of αΔ34–82-ENaC arises from an increased population of uncleaved, near-silent ENaC, rather than from a reduced open probability spread uniformly across all channels. After treatment with brefeldin A to disrupt anterograde trafficking of channel subunits, INa in oocytes expressing αΔ34–82-ENaC is reestablished more slowly than that in oocytes expressing WT ENaC. Overnight or acute incubation of oocytes expressing WT ENaC in the pore blocker amiloride increases basal ENaC proteolytic stimulation, consistent with relief of Na+ feedback inhibition. These responses are reduced in oocytes expressing αΔ34–82-ENaC. We conclude that the α-ENaC N terminus mediates interactions that govern the delivery of cleaved and uncleaved ENaC populations to the oocyte membrane.


2018 ◽  
Vol 596 (16) ◽  
pp. 3585-3602 ◽  
Author(s):  
Gustavo Frindt ◽  
Lei Yang ◽  
Krister Bamberg ◽  
Lawrence G. Palmer

2018 ◽  
Vol 50 (1) ◽  
pp. 363-377 ◽  
Author(s):  
Rie Marunaka ◽  
Akiyuki Taruno ◽  
Toshiro Yamamoto ◽  
Narisato Kanamura ◽  
Yoshinori Marunaka

Background/Aims: Epithelial Na+ channels (ENaCs) play crucial roles in control of blood pressure by determining the total amount of renal Na+ reabsorption, which is regulated by various factors such as aldosterone, vasopressin, insulin and osmolality. The intracellular trafficking process of ENaCs regulates the amount of the ENaC-mediated Na+ reabsorption in the collecting duct of the kidney mainly by determining the number of ENaC expressed at the apical membrane of epithelial cells. Although we previously reported protein tyrosine kinases (PTKs) contributed to the ENaC-mediated epithelial Na+ reabsorption, we have no information on the role of PTKs in the intracellular ENaC trafficking. Methods: Using the mathematical model recently established in our laboratory, we studied the effect of PTKs inhibitors (PTKIs), AG1296 (10 µM: an inhibitor of the PDGF receptor (PDGFR)) and AG1478 (10 µM: an inhibitor of the EGF receptor (EGFR)) on the rates of the intracellular ENaC trafficking in renal epithelial A6 cells endogenously expressing ENaCs. Results: We found that application of PTKIs significantly reduced the insertion rate of ENaC to the apical membrane by 56%, the recycling rate of ENaC by 83%, the cumulative time of an individual ENaC staying in the apical membrane by 27%, the whole life-time after the first insertion of ENaC by 47%, and the cumulative Na+ absorption by 61%, while the degradation rate was increased to 3.8-fold by application of PTKIs. These observations indicate that PTKs contribute to the processes of insertion, recycling and degradation of ENaC in the intracellular trafficking process under a hypotonic condition. Conclusion: The present study indicates that application of EGFR and PDGFR-inhibitable PTKIs reduced the insertion rate (kI), and the recycling rate (kR) of ENaCs, but increased degradation rate (kD) in renal A6 epithelial cells under a hypotonic condition. These observations indicate that hypotonicity increases the surface expression of ENaCs by increasing the insertion rate (kI) and the recycling rate (kR) of ENaCs associated with a decrease in the degradation rate but without any significant effects on the endocytotic rate (kE) in EGFR and PDGFR-related PTKs-mediated pathways.


Sign in / Sign up

Export Citation Format

Share Document