scholarly journals Mutation in the M1 Domain of the Acetylcholine Receptor α Subunit Decreases the Rate of Agonist Dissociation

1997 ◽  
Vol 109 (6) ◽  
pp. 757-766 ◽  
Author(s):  
Hai-Long Wang ◽  
Anthony Auerbach ◽  
Nina Bren ◽  
Kinji Ohno ◽  
Andrew G. Engel ◽  
...  

We describe the kinetic consequences of the mutation N217K in the M1 domain of the acetylcholine receptor (AChR) α subunit that causes a slow channel congenital myasthenic syndrome (SCCMS). We previously showed that receptors containing αN217K expressed in 293 HEK cells open in prolonged activation episodes strikingly similar to those observed at the SCCMS end plates. Here we use single channel kinetic analysis to show that the prolonged activation episodes result primarily from slowing of the rate of acetylcholine (ACh) dissociation from the binding site. Rate constants for channel opening and closing are also slowed but to much smaller extents. The rate constants derived from kinetic analysis also describe the concentration dependence of receptor activation, revealing a 20-fold shift in the EC50 to lower agonist concentrations for αN217K. The apparent affinity of ACh binding, measured by competition against the rate of 125I-α-bungarotoxin binding, is also enhanced 20-fold by αN217K. Both the slowing of ACh dissociation and enhanced apparent affinity are specific to the lysine substitution, as the glutamine and glutamate substitutions have no effect. Substituting lysine for the equivalent asparagine in the β, ε, or δ subunits does not affect the kinetics of receptor activation or apparent agonist affinity. The results show that a mutation in the amino-terminal portion of the M1 domain produces a localized perturbation that stabilizes agonist bound to the resting state of the AChR.

2002 ◽  
Vol 120 (4) ◽  
pp. 483-496 ◽  
Author(s):  
Steven M. Sine ◽  
Xing-Ming Shen ◽  
Hai-Long Wang ◽  
Kinji Ohno ◽  
Won-Yong Lee ◽  
...  

By defining functional defects in a congenital myasthenic syndrome (CMS), we show that two mutant residues, located in a binding site region of the acetylcholine receptor (AChR) epsilon subunit, exert opposite effects on ACh binding and suppress channel gating. Single channel kinetic analysis reveals that the first mutation, εN182Y, increases ACh affinity for receptors in the resting closed state, which promotes sequential occupancy of the binding sites and discloses rate constants for ACh occupancy of the nonmutant αδ site. Studies of the analogous mutation in the δ subunit, δN187Y, disclose rate constants for ACh occupancy of the nonmutant αε site. The second CMS mutation, εD175N, reduces ACh affinity for receptors in the resting closed state; occupancy of the mutant site still promotes gating because a large difference in affinity is maintained between closed and open states. εD175N impairs overall gating, however, through an effect independent of ACh occupancy. When mapped on a structural model of the AChR binding site, εN182Y localizes to the interface with the α subunit, and εD175 to the entrance of the ACh binding cavity. Both εN182Y and εD175 show state specificity in affecting closed relative to desensitized state affinities, suggesting that the protein chain harboring εN182 and εD175 rearranges in the course of receptor desensitization. The overall results show that key residues at the ACh binding site differentially stabilize the agonist bound to closed, open and desensitized states, and provide a set point for gating of the channel.


2000 ◽  
Vol 116 (3) ◽  
pp. 327-340 ◽  
Author(s):  
Claudio Grosman ◽  
Frank N. Salamone ◽  
Steven M. Sine ◽  
Anthony Auerbach

We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2–M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the α subunit (αS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydrophilic mutations (Asp, Lys, and Gln) are without effect. Because the gating kinetics of the αS269I receptor (a congenital myasthenic syndrome mutant) in the presence of ACh are too fast, choline was used as the agonist. This revealed an ∼92-fold increased gating equilibrium constant, which is consistent with an ∼10-fold decreased EC50 in the presence of ACh. With choline, this mutation accelerates channel opening ∼28-fold, slows channel closing ∼3-fold, but does not affect agonist binding to the closed state. These ratios suggest that, with ACh, αS269I acetylcholine receptors open at a rate of ∼1.4 × 106 s−1 and close at a rate of ∼760 s−1. These gating rate constants, together with the measured duration of apparent openings at low ACh concentrations, further suggest that ACh dissociates from the diliganded open receptor at a rate of ∼140 s−1. Ile mutations at positions flanking αS269 impair, rather than enhance, channel gating. Inserting or deleting one residue from this linker in the α subunit increased and decreased, respectively, the apparent open time approximately twofold. Contrary to the αS269I mutation, Ile mutations at equivalent positions of the β, ε, and δ subunits do not affect apparent open-channel lifetimes. However, in β and ε, shifting the mutation one residue to the NH2-terminal end enhances channel gating. The overall results indicate that this linker is a control element whose hydrophobicity determines channel gating in a position- and subunit-dependent manner. Characterization of the transition state of the gating reaction suggests that during channel opening the M2–M3L of the α subunit moves before the corresponding linkers of the β and ε subunits.


2007 ◽  
Vol 130 (6) ◽  
pp. 569-579 ◽  
Author(s):  
Prasad Purohit ◽  
Anthony Auerbach

Acetylcholine receptor channel gating is a brownian conformational cascade in which nanometer-sized domains (“Φ blocks”) move in staggering sequence to link an affinity change at the transmitter binding sites with a conductance change in the pore. In the α-subunit, the first Φ-block to move during channel opening is comprised of residues near the transmitter binding site and the second is comprised of residues near the base of the extracellular domain. We used the rate constants estimated from single-channel currents to infer the gating dynamics of Y127 and K145, in the inner and outer sheet of the β-core of the α-subunit. Y127 is at the boundary between the first and second Φ blocks, at a subunit interface. αY127 mutations cause large changes in the gating equilibrium constant and with a characteristic Φ-value (Φ = 0.77) that places this residue in the second Φ-block. We also examined the effect on gating of mutations in neighboring residues δI43 (Φ = 0.86), εN39 (complex kinetics), αI49 (no effect) and in residues that are homologous to αY127 on the ε, β, and δ subunits (no effect). The extent to which αY127 gating motions are coupled to its neighbors was estimated by measuring the kinetic and equilibrium constants of constructs having mutations in αY127 (in both α subunits) plus residues αD97 or δI43. The magnitude of the coupling between αD97 and αY127 depended on the αY127 side chain and was small for both H (0.53 kcal/mol) and C (−0.37 kcal/mol) substitutions. The coupling across the single α–δ subunit boundary was larger (0.84 kcal/mol). The Φ-value for K145 (0.96) indicates that its gating motion is correlated temporally with the motions of residues in the first Φ-block and is not synchronous with those of αY127. This suggests that the inner and outer sheets of the α-subunit β-core do not rotate as a rigid body.


2020 ◽  
Vol 152 (9) ◽  
Author(s):  
Kathiresan Natarajan ◽  
Nuriya Mukhtasimova ◽  
Jeremías Corradi ◽  
Matías Lasala ◽  
Cecilia Bouzat ◽  
...  

The α7 nicotinic acetylcholine receptor (nAChR) is among the most abundant types of nAChR in the brain, yet the ability of nerve-released ACh to activate α7 remains enigmatic. In particular, a major population of α7 resides in extra-synaptic regions where the ACh concentration is reduced, owing to dilution and enzymatic hydrolysis, yet ACh shows low potency in activating α7. Using high-resolution single-channel recording techniques, we show that extracellular calcium is a powerful potentiator of α7 activated by low concentrations of ACh. Potentiation manifests as robust increases in the frequency of channel opening and the average duration of the openings. Molecular dynamics simulations reveal that calcium binds to the periphery of the five ligand binding sites and is framed by a pair of anionic residues from the principal and complementary faces of each site. Mutation of residues identified by simulation prevents calcium from potentiating ACh-elicited channel opening. An anionic residue is conserved at each of the identified positions in all vertebrate species of α7. Thus, calcium associates with a novel structural motif on α7 and is an obligate cofactor in regions of limited ACh concentration.


2000 ◽  
Vol 116 (3) ◽  
pp. 449-462 ◽  
Author(s):  
Hai-Long Wang ◽  
Kinji Ohno ◽  
Margherita Milone ◽  
Joan M. Brengman ◽  
Amelia Evoli ◽  
...  

We describe the genetic and kinetic defects in a congenital myasthenic syndrome due to the mutation εA411P in the amphipathic helix of the acetylcholine receptor (AChR) ε subunit. Myasthenic patients from three unrelated families are either homozygous for εA411P or are heterozygous and harbor a null mutation in the second ε allele, indicating that εA411P is recessive. We expressed human AChRs containing wild-type or A411P ε subunits in 293HEK cells, recorded single channel currents at high bandwidth, and determined microscopic rate constants for individual channels using hidden Markov modeling. For individual wild-type and mutant channels, each rate constant distributes as a Gaussian function, but the spread in the distributions for channel opening and closing rate constants is greatly expanded by εA411P. Prolines engineered into positions flanking residue 411 of the ε subunit greatly increase the range of activation kinetics similar to εA411P, whereas prolines engineered into positions equivalent to εA411 in β and δ subunits are without effect. Thus, the amphipathic helix of the ε subunit stabilizes the channel, minimizing the number and range of kinetic modes accessible to individual AChRs. The findings suggest that analogous stabilizing structures are present in other ion channels, and possibly allosteric proteins in general, and that they evolved to maintain uniformity of activation episodes. The findings further suggest that the fundamental gating mechanism of the AChR channel can be explained by a corrugated energy landscape superimposed on a steeply sloped energy well.


2003 ◽  
Vol 122 (5) ◽  
pp. 521-539 ◽  
Author(s):  
Sudha Chakrapani ◽  
Timothy D. Bailey ◽  
Anthony Auerbach

Nicotinic acetylcholine receptor channel (AChR) gating is an organized sequence of molecular motions that couples a change in the affinity for ligands at the two transmitter binding sites with a change in the ionic conductance of the pore. Loop 5 (L5) is a nine-residue segment (mouse α-subunit 92–100) that links the β4 and β5 strands of the extracellular domain and that (in the α-subunit) contains binding segment A. Based on the structure of the acetylcholine binding protein, we speculate that in AChRs L5 projects from the transmitter binding site toward the membrane along a subunit interface. We used single-channel kinetics to quantify the effects of mutations to αD97 and other L5 residues with respect to agonist binding (to both open and closed AChRs), channel gating (for both unliganded and fully-liganded AChRs), and desensitization. Most αD97 mutations increase gating (up to 168-fold) but have little or no effect on ligand binding or desensitization. Rate-equilibrium free energy relationship analysis indicates that αD97 moves early in the gating reaction, in synchrony with the movement of the transmitter binding site (Φ = 0.93, which implies an open-like character at the transition state). αD97 mutations in the two α-subunits have unequal energetic consequences for gating, but their contributions are independent. We conclude that the key, underlying functional consequence of αD97 perturbations is to increase the unliganded gating equilibrium constant. L5 emerges as an important and early link in the AChR gating reaction which, in the absence of agonist, serves to increase the relative stability of the closed conformation of the protein.


2000 ◽  
Vol 115 (2) ◽  
pp. 93-106 ◽  
Author(s):  
Gary G. Wilson ◽  
Juan M. Pascual ◽  
Natasja Brooijmans ◽  
Diana Murray ◽  
Arthur Karlin

A ring of aligned glutamate residues named the intermediate ring of charge surrounds the intracellular end of the acetylcholine receptor channel and dominates cation conduction (Imoto et al. 1988). Four of the five subunits in mouse-muscle acetylcholine receptor contribute a glutamate to the ring. These glutamates were mutated to glutamine or lysine, and combinations of mutant and native subunits, yielding net ring charges of −1 to −4, were expressed in Xenopus laevis oocytes. In all complexes, the α subunit contained a Cys substituted for αThr244, three residues away from the ring glutamate αGlu241. The rate constants for the reactions of αThr244Cys with the neutral 2-hydroxyethyl-methanethiosulfonate, the positively charged 2-ammonioethyl-methanethiosulfonate, and the doubly positively charged 2-ammonioethyl-2′-ammonioethanethiosulfonate were determined from the rates of irreversible inhibition of the responses to acetylcholine. The reagents were added in the presence and absence of acetylcholine and at various transmembrane potentials, and the rate constants were extrapolated to zero transmembrane potential. The intrinsic electrostatic potential in the channel in the vicinity of the ring of charge was estimated from the ratios of the rate constants of differently charged reagents. In the acetylcholine-induced open state, this potential was −230 mV with four glutamates in the ring and increased linearly towards 0 mV by +57 mV for each negative charge removed from the ring. Thus, the intrinsic electrostatic potential in the narrow, intracellular end of the open channel is almost entirely due to the intermediate ring of charge and is strongly correlated with alkali-metal-ion conductance through the channel. The intrinsic electrostatic potential in the closed state of the channel was more positive than in the open state at all values of the ring charge. These electrostatic properties were simulated by theoretical calculations based on a simplified model of the channel.


1992 ◽  
Vol 100 (4) ◽  
pp. 729-748 ◽  
Author(s):  
L D Chabala

Whole-cell currents from nicotinic acetylcholine receptor (AChR) channels were studied in rat myoballs using a light-activated agonist to determine the voltage dependence of the macroscopic opening and closing rate constants. Myoballs were bathed in a solution containing a low concentration of the inactive isomer of the photoisomerizable azobenzene derivative, cis-Bis-Q. A light flash was then presented to produce a known concentration jump of agonist, trans-Bis-Q, across a wide range of membrane potentials in symmetrical solutions (NaCl or CsCl on both sides) or asymmetrical solutions (NaCl in the bath and CsCl in the pipette). At the low agonist concentration used in this study, the reciprocal of the macroscopic time constants gives an unambiguous measure of the effective closing rate. It showed an exponential decrease with membrane hyperpolarization between +20 and -100 mV, but tended to level off at more depolarized and at more hyperpolarized membrane potentials. The relative effective opening rate was derived from the steady-state conductance, the single-channel conductance, and the apparent closing rate; it decreased sharply in the depolarizing region and tended to level off and then turn up in the hyperpolarizing region. The two effective rate constants were shown to depend on the first, second, and third power of membrane potential.


1989 ◽  
Vol 237 (1287) ◽  
pp. 247-257 ◽  

In human myotubes cultured from biopsies of normal subjects and dystrophic patients we investigated, with the patch-clamp technique, the activation properties of the nicotinic acetylcholine receptor (AChoR) in the presence of acetylcholine and suberyldicholine. The single-channel conductance and the lifetime of the openings were not found to differ. In contrast, the average frequency of openings was about four times higher in Duchenne muscular dystrophy (DMD) myotubes in the presence of equal amounts of acetylcholine, but not of suberyldicholine. The most reasonable conclusion from this observation is that the behaviour of the AChoR is not altered in DMD cells but that there is a greater average concentration of ACho molecules present around AChoRs. This leads to the tentative conclusion that the activity of the enzyme acetylcholinesterase (AChoE) is impaired by some unknown mechanism in the dystrophic myotube.


Sign in / Sign up

Export Citation Format

Share Document