scholarly journals The Extracellular Linker of Muscle Acetylcholine Receptor Channels Is a Gating Control Element

2000 ◽  
Vol 116 (3) ◽  
pp. 327-340 ◽  
Author(s):  
Claudio Grosman ◽  
Frank N. Salamone ◽  
Steven M. Sine ◽  
Anthony Auerbach

We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2–M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the α subunit (αS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydrophilic mutations (Asp, Lys, and Gln) are without effect. Because the gating kinetics of the αS269I receptor (a congenital myasthenic syndrome mutant) in the presence of ACh are too fast, choline was used as the agonist. This revealed an ∼92-fold increased gating equilibrium constant, which is consistent with an ∼10-fold decreased EC50 in the presence of ACh. With choline, this mutation accelerates channel opening ∼28-fold, slows channel closing ∼3-fold, but does not affect agonist binding to the closed state. These ratios suggest that, with ACh, αS269I acetylcholine receptors open at a rate of ∼1.4 × 106 s−1 and close at a rate of ∼760 s−1. These gating rate constants, together with the measured duration of apparent openings at low ACh concentrations, further suggest that ACh dissociates from the diliganded open receptor at a rate of ∼140 s−1. Ile mutations at positions flanking αS269 impair, rather than enhance, channel gating. Inserting or deleting one residue from this linker in the α subunit increased and decreased, respectively, the apparent open time approximately twofold. Contrary to the αS269I mutation, Ile mutations at equivalent positions of the β, ε, and δ subunits do not affect apparent open-channel lifetimes. However, in β and ε, shifting the mutation one residue to the NH2-terminal end enhances channel gating. The overall results indicate that this linker is a control element whose hydrophobicity determines channel gating in a position- and subunit-dependent manner. Characterization of the transition state of the gating reaction suggests that during channel opening the M2–M3L of the α subunit moves before the corresponding linkers of the β and ε subunits.

1997 ◽  
Vol 109 (6) ◽  
pp. 757-766 ◽  
Author(s):  
Hai-Long Wang ◽  
Anthony Auerbach ◽  
Nina Bren ◽  
Kinji Ohno ◽  
Andrew G. Engel ◽  
...  

We describe the kinetic consequences of the mutation N217K in the M1 domain of the acetylcholine receptor (AChR) α subunit that causes a slow channel congenital myasthenic syndrome (SCCMS). We previously showed that receptors containing αN217K expressed in 293 HEK cells open in prolonged activation episodes strikingly similar to those observed at the SCCMS end plates. Here we use single channel kinetic analysis to show that the prolonged activation episodes result primarily from slowing of the rate of acetylcholine (ACh) dissociation from the binding site. Rate constants for channel opening and closing are also slowed but to much smaller extents. The rate constants derived from kinetic analysis also describe the concentration dependence of receptor activation, revealing a 20-fold shift in the EC50 to lower agonist concentrations for αN217K. The apparent affinity of ACh binding, measured by competition against the rate of 125I-α-bungarotoxin binding, is also enhanced 20-fold by αN217K. Both the slowing of ACh dissociation and enhanced apparent affinity are specific to the lysine substitution, as the glutamine and glutamate substitutions have no effect. Substituting lysine for the equivalent asparagine in the β, ε, or δ subunits does not affect the kinetics of receptor activation or apparent agonist affinity. The results show that a mutation in the amino-terminal portion of the M1 domain produces a localized perturbation that stabilizes agonist bound to the resting state of the AChR.


2002 ◽  
Vol 120 (4) ◽  
pp. 483-496 ◽  
Author(s):  
Steven M. Sine ◽  
Xing-Ming Shen ◽  
Hai-Long Wang ◽  
Kinji Ohno ◽  
Won-Yong Lee ◽  
...  

By defining functional defects in a congenital myasthenic syndrome (CMS), we show that two mutant residues, located in a binding site region of the acetylcholine receptor (AChR) epsilon subunit, exert opposite effects on ACh binding and suppress channel gating. Single channel kinetic analysis reveals that the first mutation, εN182Y, increases ACh affinity for receptors in the resting closed state, which promotes sequential occupancy of the binding sites and discloses rate constants for ACh occupancy of the nonmutant αδ site. Studies of the analogous mutation in the δ subunit, δN187Y, disclose rate constants for ACh occupancy of the nonmutant αε site. The second CMS mutation, εD175N, reduces ACh affinity for receptors in the resting closed state; occupancy of the mutant site still promotes gating because a large difference in affinity is maintained between closed and open states. εD175N impairs overall gating, however, through an effect independent of ACh occupancy. When mapped on a structural model of the AChR binding site, εN182Y localizes to the interface with the α subunit, and εD175 to the entrance of the ACh binding cavity. Both εN182Y and εD175 show state specificity in affecting closed relative to desensitized state affinities, suggesting that the protein chain harboring εN182 and εD175 rearranges in the course of receptor desensitization. The overall results show that key residues at the ACh binding site differentially stabilize the agonist bound to closed, open and desensitized states, and provide a set point for gating of the channel.


2008 ◽  
Vol 132 (2) ◽  
pp. 265-278 ◽  
Author(s):  
Won Yong Lee ◽  
Chris R. Free ◽  
Steven M. Sine

Nicotinic acetylcholine receptors (AChRs) mediate rapid excitatory synaptic transmission throughout the peripheral and central nervous systems. They transduce binding of nerve-released ACh into opening of an intrinsic channel, yet the structural basis underlying transduction is not fully understood. Previous studies revealed a principal transduction pathway in which αArg 209 of the pre-M1 domain and αGlu 45 of the β1–β2 loop functionally link the two regions, positioning αVal 46 of the β1–β2 loop in a cavity formed by αPro 272 through αSer 269 of the M2–M3 loop. Here we investigate contributions of residues within and proximal to this pathway using single-channel kinetic analysis, site-directed mutagenesis, and thermodynamic mutant cycle analysis. We find that in contributing to channel gating, αVal 46 and αVal 132 of the signature Cys loop couple energetically to αPro 272. Furthermore, these residues are optimized in both their size and hydrophobicity to mediate rapid and efficient channel gating, suggesting naturally occurring substitutions at these positions enable a diverse range of gating rate constants among the Cys-loop receptor superfamily. The overall results indicate that αPro 272 functionally couples to flanking Val residues extending from the β1–β2 and Cys loops within the ACh binding to channel opening transduction pathway.


2004 ◽  
Vol 123 (4) ◽  
pp. 341-356 ◽  
Author(s):  
Sudha Chakrapani ◽  
Timothy D. Bailey ◽  
Anthony Auerbach

We used single-channel recording and model-based kinetic analyses to quantify the effects of mutations in the extracellular domain (ECD) of the α-subunit of mouse muscle–type acetylcholine receptors (AChRs). The crystal structure of an acetylcholine binding protein (AChBP) suggests that the ECD is comprised of a β-sandwich core that is surrounded by loops. Here we focus on loops 2 and 7, which lie at the interface of the AChR extracellular and transmembrane domains. Side chain substitutions in these loops primarily affect channel gating by either decreasing or increasing the gating equilibrium constant. Many of the mutations to the β-core prevent the expression of functional AChRs, but of the mutants that did express almost all had wild-type behavior. Rate-equilibrium free energy relationship analyses reveal the presence of two contiguous, distinct synchronously-gating domains in the α-subunit ECD that move sequentially during the AChR gating reaction. The transmitter-binding site/loop 5 domain moves first (Φ = 0.93) and is followed by the loop 2/loop 7 domain (Φ = 0.80). These movements precede that of the extracellular linker (Φ = 0.69). We hypothesize that AChR gating occurs as the stepwise movements of such domains that link the low-to-high affinity conformational change in the TBS with the low-to-high conductance conformational change in the pore.


2002 ◽  
Vol 120 (3) ◽  
pp. 369-393 ◽  
Author(s):  
Richard J. Prince ◽  
Richard A. Pennington ◽  
Steven M. Sine

We used single-channel kinetic analysis to study the inhibitory effects of tacrine on human adult nicotinic receptors (nAChRs) transiently expressed in HEK 293 cells. Single channel recording from cell-attached patches revealed concentration- and voltage-dependent decreases in mean channel open probability produced by tacrine (IC50 4.6 μM at −70 mV, 1.6 μM at −150 mV). Two main effects of tacrine were apparent in the open- and closed-time distributions. First, the mean channel open time decreased with increasing tacrine concentration in a voltage-dependent manner, strongly suggesting that tacrine acts as an open-channel blocker. Second, tacrine produced a new class of closings whose duration increased with increasing tacrine concentration. Concentration dependence of closed-times is not predicted by sequential models of channel block, suggesting that tacrine blocks the nAChR by an unusual mechanism. To probe tacrine's mechanism of action we fitted a series of kinetic models to our data using maximum likelihood techniques. Models incorporating two tacrine binding sites in the open receptor channel gave dramatically improved fits to our data compared with the classic sequential model, which contains one site. Improved fits relative to the sequential model were also obtained with schemes incorporating a binding site in the closed channel, but only if it is assumed that the channel cannot gate with tacrine bound. Overall, the best description of our data was obtained with a model that combined two binding sites in the open channel with a single site in the closed state of the receptor.


2004 ◽  
Vol 24 (16) ◽  
pp. 7188-7196 ◽  
Author(s):  
Marianna Rodova ◽  
Kevin F. Kelly ◽  
Michael VanSaun ◽  
Juliet M. Daniel ◽  
Michael J. Werle

ABSTRACT Rapsyn is a synapse-specific protein that is required for clustering acetylcholine receptors at the neuromuscular junction. Analysis of the rapsyn promoter revealed a consensus site for the transcription factor Kaiso within a region that is mutated in a subset of patients with congenital myasthenic syndrome. Kaiso is a POZ-zinc finger family transcription factor which recognizes the specific core consensus sequence CTGCNA (where N is any nucleotide). Previously, the only known binding partner for Kaiso was the cell adhesion cofactor, p120 catenin. Here we show that δ-catenin, a brain-specific member of the p120 catenin subfamily, forms a complex with Kaiso. Antibodies against Kaiso and δ-catenin recognize proteins in the nuclei of C2C12 myocytes and at the postsynaptic domain of the mouse neuromuscular junction. Endogenous Kaiso in C2C12 cells coprecipitates with the rapsyn promoter in vivo as shown by chromatin immunoprecipitation assay. Minimal promoter assays demonstrated that the rapsyn promoter can be activated by Kaiso and δ-catenin; this activation is apparently muscle specific. These results provide the first experimental evidence that rapsyn is a direct sequence-specific target of Kaiso and δ-catenin. We propose a new model of synapse-specific transcription that involves the interaction of Kaiso, δ-catenin, and myogenic transcription factors at the neuromuscular junction.


2006 ◽  
Vol 127 (5) ◽  
pp. 481-494 ◽  
Author(s):  
Jorge E. Contreras ◽  
Miguel Holmgren

Cyclic nucleotide-gated (CNG) channels play important roles in the transduction of visual and olfactory information by sensing changes in the intracellular concentration of cyclic nucleotides. We have investigated the interactions between intracellularly applied quaternary ammonium (QA) ions and the α subunit of rod cyclic nucleotide-gated channels. We have used a family of alkyl-triethylammonium derivatives in which the length of one chain is altered. These QA derivatives blocked the permeation pathway of CNG channels in a concentration- and voltage-dependent manner. For QA compounds with tails longer than six methylene groups, increasing the length of the chain resulted in higher apparent affinities of ∼1.2 RT per methylene group added, which is consistent with the presence of a hydrophobic pocket within the intracellular mouth of the channel that serves as part of the receptor binding site. At the single channel level, decyltriethyl ammonium (C10-TEA) ions did not change the unitary conductance but they did reduce the apparent mean open time, suggesting that the blocker binds to open channels. We provide four lines of evidence suggesting that QA ions can also bind to closed channels: (1) the extent of C10-TEA blockade at subsaturating [cGMP] was larger than at saturating agonist concentration, (2) under saturating concentrations of cGMP, cIMP, or cAMP, blockade levels were inversely correlated with the maximal probability of opening achieved by each agonist, (3) in the closed state, MTS reagents of comparable sizes to QA ions were able to modify V391C in the inner vestibule of the channel, and (4) in the closed state, C10-TEA was able to slow the Cd2+ inhibition observed in V391C channels. These results are in stark contrast to the well-established QA blockade mechanism in Kv channels, where these compounds can only access the inner vestibule in the open state because the gate that opens and closes the channel is located cytoplasmically with respect to the binding site of QA ions. Therefore, in the context of Kv channels, our observations suggest that the regions involved in opening and closing the permeation pathways in these two types of channels are different.


1994 ◽  
Vol 267 (5) ◽  
pp. C1231-C1238 ◽  
Author(s):  
K. E. Overturf ◽  
S. N. Russell ◽  
A. Carl ◽  
F. Vogalis ◽  
P. J. Hart ◽  
...  

We have cloned and characterized the expression of a Kv1.5 K+ channel (cKv1.5) from canine colonic smooth muscle. The amino acid sequence displayed a high level of identity to other K+ channels of the Kv1.5 class in the core region between transmembrane segments S1-S6; however, identity decreased to between 74 and 82% in the NH2 and COOH terminal segments, suggesting that cKv1.5 is a distinct isoform of the Kv1.5 class. Functional expression of cKv1.5 in oocytes demonstrated a channel highly selective for K+, which activates in a voltage-dependent manner on depolarization to membrane potentials positive to -40 mV. At room temperature the channel showed fast activation (time to half of peak current, 5.5 ms) and slow inactivation that was incomplete after 20-s depolarizations. Single channel analysis of the channel expressed in oocytes displayed a linear current-voltage curve and had a slope conductance of 9.8 +/- 1.1 pS. Northern blot analysis demonstrated differential expression of cKv1.5 in smooth muscles of the gastrointestinal tract and abundant expression in several vascular smooth muscles. We propose that cKv1.5 represents a component of the delayed rectifier current in both vascular and visceral smooth muscles.


2000 ◽  
Vol 116 (3) ◽  
pp. 449-462 ◽  
Author(s):  
Hai-Long Wang ◽  
Kinji Ohno ◽  
Margherita Milone ◽  
Joan M. Brengman ◽  
Amelia Evoli ◽  
...  

We describe the genetic and kinetic defects in a congenital myasthenic syndrome due to the mutation εA411P in the amphipathic helix of the acetylcholine receptor (AChR) ε subunit. Myasthenic patients from three unrelated families are either homozygous for εA411P or are heterozygous and harbor a null mutation in the second ε allele, indicating that εA411P is recessive. We expressed human AChRs containing wild-type or A411P ε subunits in 293HEK cells, recorded single channel currents at high bandwidth, and determined microscopic rate constants for individual channels using hidden Markov modeling. For individual wild-type and mutant channels, each rate constant distributes as a Gaussian function, but the spread in the distributions for channel opening and closing rate constants is greatly expanded by εA411P. Prolines engineered into positions flanking residue 411 of the ε subunit greatly increase the range of activation kinetics similar to εA411P, whereas prolines engineered into positions equivalent to εA411 in β and δ subunits are without effect. Thus, the amphipathic helix of the ε subunit stabilizes the channel, minimizing the number and range of kinetic modes accessible to individual AChRs. The findings suggest that analogous stabilizing structures are present in other ion channels, and possibly allosteric proteins in general, and that they evolved to maintain uniformity of activation episodes. The findings further suggest that the fundamental gating mechanism of the AChR channel can be explained by a corrugated energy landscape superimposed on a steeply sloped energy well.


Sign in / Sign up

Export Citation Format

Share Document