scholarly journals Unitary Ca2+ Current through Cardiac Ryanodine Receptor Channels under Quasi-Physiological Ionic Conditions

1999 ◽  
Vol 113 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Rafael Mejía-Alvarez ◽  
Claudia Kettlun ◽  
Eduardo Ríos ◽  
Michael Stern ◽  
Michael Fill

Single canine cardiac ryanodine receptor channels were incorporated into planar lipid bilayers. Single-channel currents were sampled at 1–5 kHz and filtered at 0.2–1.0 kHz. Channel incorporations were obtained in symmetrical solutions (20 mM HEPES-Tris, pH 7.4, and pCa 5). Unitary Ca2+ currents were monitored when 2–30 mM Ca2+ was added to the lumenal side of the channel. The relationship between the amplitude of unitary Ca2+ current (at 0 mV holding potential) and lumenal [Ca2+] was hyperbolic and saturated at ∼4 pA. This relationship was then defined in the presence of different symmetrical CsCH3SO3 concentrations (5, 50, and 150 mM). Under these conditions, unitary current amplitude was 1.2 ± 0.1, 0.65 ± 0.1, and 0.35 ± 0.1 pA in 2 mM lumenal Ca2+; and 3.3 ± 0.4, 2.4 ± 0.2, and 1.63 ± 0.2 pA in 10 mM lumenal Ca2+ (n > 6). Unitary Ca2+ current was also defined in the presence of symmetrical [Mg2+] (1 mM) and low [Cs+] (5 mM). Under these conditions, unitary Ca2+ current in 2 and 10 mM lumenal Ca2+ was 0.66 ± 0.1 and 1.52 ± 0.06 pA, respectively. In the presence of higher symmetrical [Cs+] (50 mM), Mg2+ (1 mM), and lumenal [Ca2+] (10 mM), unitary Ca2+ current exhibited an amplitude of 0.9 ± 0.2 pA (n = 3). This result indicates that the actions of Cs+ and Mg2+ on unitary Ca2+ current were additive. These data demonstrate that physiological levels of monovalent cation and Mg2+ effectively compete with Ca2+ as charge carrier in cardiac ryanodine receptor channels. If lumenal free Ca2+ is 2 mM, then our results indicate that unitary Ca2+ current under physiological conditions should be <0.6 pA.

1997 ◽  
Vol 273 (2) ◽  
pp. H796-H804 ◽  
Author(s):  
C. Valdivia ◽  
J. O. Hegge ◽  
R. D. Lasley ◽  
H. H. Valdivia ◽  
R. Mentzer

We investigated the effects of myocardial stunning on the function of the two main Ca2+ transport proteins of the sarcoplasmic reticulum (SR), the Ca(2+)-adenosinetriphosphatase and the Ca(2+)-release channel or ryanodine receptor. Regional myocardial stunning was induced in open-chest pigs (n = 6) by a 10-min occlusion of the left anterior descending coronary artery (LAD) and 2 h reperfusion. SR vesicles isolated from the LAD-perfused region (stunned) and the normal left circumflex coronary artery (LC)-perfused region were used to assess the oxalate-supported 45Ca2+ uptake, [3H]ryanodine binding, and single-channel recordings of ryanodine-sensitive Ca(2+)-release channels in planar lipid bilayers. Myocardial stunning decreased LAD systolic wall thickening to 20% of preischemic values. The rate of SR 45Ca2+ uptake in the stunned LAD bed was reduced by 37% compared with that of the normal LC bed (P < 0.05). Stunning was also associated with a 38% reduction in the maximal density of high-affinity [3H]ryanodine binding sites (P < 0.05 vs. normal LC) but had no effect on the dissociation constant. The open probability of ryanodine-sensitive Ca(2+)-release channels determined by single channel recordings in planar lipid bilayers was 26 +/- 2% for control SR (n = 33 channels from 3 animals) and 14 +/- 2% for stunned SR (n = 21 channels; P < 0.05). This depressed activity of SR function observed in postischemic myocardium could be one of the mechanisms underlying myocardial stunning.


1998 ◽  
Vol 274 (2) ◽  
pp. R494-R502 ◽  
Author(s):  
Kerry E. Quinn ◽  
Loriana Castellani ◽  
Karol Ondrias ◽  
Barbara E. Ehrlich

Electron-microscopic analysis was used to show that invertebrate muscle has feetlike structures on the sarcoplasmic reticulum (SR) displaying the typical four-subunit appearance of the calcium (Ca2+) release channel/ryanodine receptor (RyR) observed in vertebrate skeletal muscle (K. E. Loesser, L. Castellani, and C. Franzini-Armstrong. J. Muscle Res. Cell Motil. 13: 161–173, 1992). SR vesicles from invertebrate muscle exhibited specific ryanodine binding and single channel currents that were activated by Ca2+, caffeine, and ATP and inhibited by ruthenium red. The single channel conductance of this invertebrate RyR was lower than that of the vertebrate RyR (49 and 102 pS, respectively). Activation of lobster and scallop SR Ca2+ release channel, in response to cytoplasmic Ca2+ (1 nM–10 mM), reflected a bell-shaped curve, as is found with the mammalian RyR. In contrast to a previous report (J.-H. Seok, L. Xu, N. R. Kramarcy, R. Sealock, and G. Meissner. J. Biol. Chem. 267: 15893–15901, 1992), our results show that regulation of the invertebrate and vertebrate RyRs is quite similar and suggest remarkably similar paths in these diverse organisms.


1999 ◽  
Vol 114 (5) ◽  
pp. 653-672 ◽  
Author(s):  
Enrico Nasi ◽  
Maria del Pilar Gomez

The light-dependent K conductance of hyperpolarizing Pecten photoreceptors exhibits a pronounced outward rectification that is eliminated by removal of extracellular divalent cations. The voltage-dependent block by Ca2+ and Mg2+ that underlies such nonlinearity was investigated. Both divalents reduce the photocurrent amplitude, the potency being significantly higher for Ca2+ than Mg2+ (K1/2 ≈ 16 and 61 mM, respectively, at Vm = −30 mV). Neither cation is measurably permeant. Manipulating the concentration of permeant K ions affects the blockade, suggesting that the mechanism entails occlusion of the permeation pathway. The voltage dependency of Ca2+ block is consistent with a single binding site located at an electrical distance of δ ≈ 0.6 from the outside. Resolution of light-dependent single-channel currents under physiological conditions indicates that blockade must be slow, which prompted the use of perturbation/relaxation methods to analyze its kinetics. Voltage steps during illumination produce a distinct relaxation in the photocurrent (τ = 5–20 ms) that disappears on removal of Ca2+ and Mg2+ and thus reflects enhancement or relief of blockade, depending on the polarity of the stimulus. The equilibration kinetics are significantly faster with Ca2+ than with Mg2+, suggesting that the process is dominated by the “on” rate, perhaps because of a step requiring dehydration of the blocking ion to access the binding site. Complementary strategies were adopted to investigate the interaction between blockade and channel gating: the photocurrent decay accelerates with hyperpolarization, but the effect requires extracellular divalents. Moreover, conditioning voltage steps terminated immediately before light stimulation failed to affect the photocurrent. These observations suggest that equilibration of block at different voltages requires an open pore. Inducing channels to close during a conditioning hyperpolarization resulted in a slight delay in the rising phase of a subsequent light response; this effect can be interpreted as closure of the channel with a divalent ion trapped inside.


1987 ◽  
Vol 90 (3) ◽  
pp. 375-395 ◽  
Author(s):  
E Recio-Pinto ◽  
D S Duch ◽  
S R Levinson ◽  
B W Urban

Highly purified sodium channel protein from the electric eel, Electrophorus electricus, was reconstituted into liposomes and incorporated into planar bilayers made from neutral phospholipids dissolved in decane. The purest sodium channel preparations consisted of only the large, 260-kD tetrodotoxin (TTX)-binding polypeptide. For all preparations, batrachotoxin (BTX) induced long-lived single-channel currents (25 pS at 500 mM NaCl) that showed voltage-dependent activation and were blocked by TTX. This block was also voltage dependent, with negative potentials increasing block. The permeability ratios were 4.7 for Na+:K+ and 1.6 for Na+:Li+. The midpoint for steady state activation occurred around -70 mV and did not shift significantly when the NaCl concentration was increased from 50 to 1,000 mM. Veratridine-induced single-channel currents were about half the size of those activated by BTX. Unpurified, nonsolubilized sodium channels from E. electricus membrane fragments were also incorporated into planar bilayers. There were no detectable differences in the characteristics of unpurified and purified sodium channels, although membrane stability was considerably higher when purified material was used. Thus, in the eel, the large, 260-kD polypeptide alone is sufficient to demonstrate single-channel activity like that observed for mammalian sodium channel preparations in which smaller subunits have been found.


2012 ◽  
Vol 140 (2) ◽  
pp. 93-108 ◽  
Author(s):  
Barbora Tencerová ◽  
Alexandra Zahradníková ◽  
Jana Gaburjáková ◽  
Marta Gaburjáková

The synergic effect of luminal Ca2+, cytosolic Ca2+, and cytosolic adenosine triphosphate (ATP) on activation of cardiac ryanodine receptor (RYR2) channels was examined in planar lipid bilayers. The dose–response of RYR2 gating activity to ATP was characterized at a diastolic cytosolic Ca2+ concentration of 100 nM over a range of luminal Ca2+ concentrations and, vice versa, at a diastolic luminal Ca2+ concentration of 1 mM over a range of cytosolic Ca2+ concentrations. Low level of luminal Ca2+ (1 mM) significantly increased the affinity of the RYR2 channel for ATP but without substantial activation of the channel. Higher levels of luminal Ca2+ (8–53 mM) markedly amplified the effects of ATP on the RYR2 activity by selectively increasing the maximal RYR2 activation by ATP, without affecting the affinity of the channel to ATP. Near-diastolic cytosolic Ca2+ levels (&lt;500 nM) greatly amplified the effects of luminal Ca2+. Fractional inhibition by cytosolic Mg2+ was not affected by luminal Ca2+. In models, the effects of luminal and cytosolic Ca2+ could be explained by modulation of the allosteric effect of ATP on the RYR2 channel. Our results suggest that luminal Ca2+ ions potentiate the RYR2 gating activity in the presence of ATP predominantly by binding to a luminal site with an apparent affinity in the millimolar range, over which local luminal Ca2+ likely varies in cardiac myocytes.


1983 ◽  
Vol 245 (1) ◽  
pp. C151-C156 ◽  
Author(s):  
M. T. Nelson ◽  
M. Roudna ◽  
E. Bamberg

Ion channels from a rat brain preparation enriched in presynaptic nerve terminals (synaptosomes) were incorporated into planar lipid bilayers. Experiments examined macroscopic (channel-ensemble) currents as well as single-channel currents. Four single-channel conductances (ranging from 10 to 40 pS) were usually observed, each with distinct kinetic properties. All the observed channels selected for K+ over Cl-. These K+ channels may contribute to the resting K+ conductance of brain nerve terminals. Furthermore, this report demonstrates that the properties of ion channels from mammalian brain can be studied in planar lipid bilayers and suggests that this system can be readily extended to many additional investigations on the electrical properties of brain membranes.


1986 ◽  
Vol 88 (1) ◽  
pp. 1-23 ◽  
Author(s):  
B U Keller ◽  
R P Hartshorne ◽  
J A Talvenheimo ◽  
W A Catterall ◽  
M Montal

Single channel currents of sodium channels purified from rat brain and reconstituted into planar lipid bilayers were recorded. The kinetics of channel gating were investigated in the presence of batrachotoxin to eliminate inactivation and an analysis was conducted on membranes with a single active channel at any given time. Channel opening is favored by depolarization and is strongly voltage dependent. Probability density analysis of dwell times in the closed and open states of the channel indicates the occurrence of one open state and several distinct closed states in the voltage (V) range-120 mV less than or equal to V less than or equal to +120 mV. For V less than or equal to 0, the transition rates between stages are exponentially dependent on the applied voltage, as described in mouse neuroblastoma cells (Huang, L. M., N. Moran, and G. Ehrenstein. 1984. Biophysical Journal. 45:313-322). In contrast, for V greater than or equal to 0, the transition rates are virtually voltage independent. Autocorrelation analysis (Labarca, P., J. Rice, D. Fredkin, and M. Montal. 1985. Biophysical Journal. 47:469-478) shows that there is no correlation in the durations of successive open or closing events. Several kinetic schemes that are consistent with the experimental data are considered. This approach may provide information about the mechanism underlying the voltage dependence of channel activation.


1987 ◽  
Vol 89 (6) ◽  
pp. 841-872 ◽  
Author(s):  
W N Green ◽  
L B Weiss ◽  
O S Andersen

Batrachotoxin-modified, voltage-dependent sodium channels from canine forebrain were incorporated into planar lipid bilayers. Single-channel conductances were studied for [Na+] ranging between 0.02 and 3.5 M. Typically, the single-channel currents exhibited a simple two-state behavior, with transitions between closed and fully open states. Two other conductance states were observed: a subconductance state, usually seen at [NaCl] greater than or equal to 0.5 M, and a flickery state, usually seen at [NaCl] less than or equal to 0.5 M. The flickery state became more frequent as [NaCl] was decreased below 0.5 M. The K+/Na+ permeability ratio was approximately 0.16 in 0.5 and 2.5 M salt, independent of the Na+ mole fraction, which indicates that there are no interactions among permeant ions in the channels. Impermeant and permeant blocking ions (tetraethylammonium, Ca++, Zn++, and K+) have different effects when added to the extracellular and intracellular solutions, which indicates that the channel is asymmetrical and has at least two cation-binding sites. The conductance vs. [Na+] relation saturated at high concentrations, but could not be described by a Langmuir isotherm, as the conductance at low [NaCl] is higher than predicted from the data at [NaCl] greater than or equal to 1.0 M. At low [NaCl] (less than or equal to 0.1 M), increasing the ionic strength by additions of impermeant monovalent and divalent cations reduced the conductance, as if the magnitude of negative electrostatic potentials at the channel entrances were reduced. The conductances were comparable for channels in bilayers that carry a net negative charge and bilayers that carry no net charge. Together, these results lead to the conclusion that negative charges on the channel protein near the channel entrances increase the conductance, while lipid surface charges are less important.


1988 ◽  
Vol 92 (1) ◽  
pp. 67-86 ◽  
Author(s):  
A Oberhauser ◽  
O Alvarez ◽  
R Latorre

Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.


Sign in / Sign up

Export Citation Format

Share Document