scholarly journals QUANTITATIVE ANALYSIS OF RESPONSES FROM LATERAL-LINE NERVES OF FISHES. II

1933 ◽  
Vol 16 (4) ◽  
pp. 715-732 ◽  
Author(s):  
Hudson Hoagland

1. The lateral-line nerves of trout as well as those of catfish are found to discharge impulses spontaneously at a high frequency. 2. The frequency of nerve impulse discharge is measured as a function of the number of participating receptor groups (lateral-line sense organs). A quantitative analysis is made of the contribution to the total response made by each group of sense organs. 3. An analysis of the variability of the response is presented which makes it possible to estimate quantitatively the longitudinal extent of damage to the neuromasts due to surgical manipulation. 4. A method is described for recording the response of a single nerve fiber in the lateral-line trunk. 5. The frequency of the spontaneous discharge from the lateral-line nerve trunk when plotted as a function of temperature according to the Arrhenius equation yields a temperature characteristic of approximately 5000 calories. 6. The variability of the frequency of response as a function of temperature indicates the existence of temperature thresholds for the spontaneous activity of the neuromasts. 7. A possible basis for the spontaneous activity is considered. It is pointed out that the lateral-line system may serve as a model of the Purkinje cells of the cerebellum.

1950 ◽  
Vol 34 (1) ◽  
pp. 1-8 ◽  
Author(s):  
E. E. Suckling ◽  
J. A. Suckling

1. The lateral line of Fundulus heteroclitus and Fundulus majalis is shown to react to tone at an intensity level of 20 dynes per sq. cm. at frequencies up to 200 or 300 cycles per second. 2. Evidence is given that the nerve can reproduce the stimulating tone frequency up to at least 180 cycles per second. 3. The response of the lateral line to the swimming movements of nearby fish is demonstrated. 4. Fundulus and several other species are shown to give strong spontaneous activity of the lateral line nerve.


1934 ◽  
Vol 18 (1) ◽  
pp. 89-91 ◽  
Author(s):  
Hudson Hoagland

Records of spontaneous discharge of nerve impulses, similar to that previously described in catfish and in trout, have been obtained from lateral-line nerves of goldfish and perch, by the use of concentric micro electrodes slipped under the nerve in situ. These impulses have been followed into the central nervous system. They enter the tuberculum acusticum and thence apparently spread diffusely through the cerebellum. Cutting the lateral-line nerve on one side silences the ipsilateral tuberculum acusticum, but only reduces the intensity of ipsilateral cerebellar activity. Cutting the remaining lateral-line nerve silences activity throughout the tuberculum acusticum and the cerebellum. The maintenance of tonic activity in the tuberculum acusticum by way of lateral-line discharge may account for the inhibitory effects of the lateral-line system on auditory responses.


The recognition of the morphological and developmental relationship of the vertebrate auditory organ and the lateral-line system of fishes and aquatic Amphibia rests on the foundation of a large volume of com­ parative researches. The main outlines of this generalization were already laid down forty years ago, and Cole’s work on the cranial nerves and lateral sense organs of fishes (1898) contains a comprehensive treatment of the history of the subject. The acustico-lateral or neuromast system embraces, in addition to the labyrinth and the lateral-line canals, the pit organs found to a greater or less extent in most fishes, the vesicles of Torpedo , and the ampullary canal system of Selachians and Holocephali. Concerning these Cole wrote: “The history of our knowledge of the phylogeny of the sensory canals is coincident with three discoveries—the discovery that the‘mucus’ canals contain sense organs, the discovery of Savi’s vesicles, and the dis­covery of the ampullae of Lorenzini.... We now know that all three types belong to the lateral line system, and I shall suggest that they represent three stages in the development of a canal—the most superficial condition, represented by the pit organs and Savi’s vesicles; the full development, represented by the canal; and the intermediate type, forming neither a Savi vesicle nor yet a canal, represented by the ampullae of Lorenzini” (p. 187). This conception has remained valid to the present day. The ampullae of Lorenzini, with which I am here principally concerned, are briefly described in current text-books as transitional or specialized neuromasts, and the implication always is that structurally and functionally they do not differ significantly from the neuromasts of the lateral-line canals. For example, in their recent exhaustive treatise on the vertebrate nervous system Kappers, Huber and Crosby (1936) state with reference to the lateral-line canals, the Savi vesicles and the ampullae of Lorenzini: “thus in the various animals there is a transition between an open and a closed system for perceiving vibrations" (p. 438).


For a long time after their discovery in the seventeenth century the lateral-line canals of fishes were considered to be mucus-secreting organs. In 1850 Leydig described sense organs in the lateral-line canals, and this discovery stimulated a keen interest in the investigation of both the morphological and functional features of the lateral-line system. Morphological studies have yielded a thorough understanding of the structure of these organs (Ewart and Mitchell 1892; Cole 1896; Johnson 1917; von Woellwarth 1933). Physiological studies, though numerous, have been less fruitful. An account of the older work was given by Baglioni (1913), and the more recent work is reviewed by Dykgraaf (1933). The only technique until recently available has been the elimination of the sensory system by nerve section and cauterization, and the comparison of the behaviour of intact and operated fishes in response to various stimuli. With so diffuse a structure as the lateral-line system, receiving its nerve supply from the fifth, seventh, ninth and tenth cranial nerves, this method is particularly inadequate, and involves a violent mutilation of the animal. When one considers the crudity of many of these operations, it is not the uncertainty of the results which is remarkable, but rather that some of the conclusions reached should remain valid to-day in the light of far more penetrating experimental analysis. This method of organ elimination could yield at best only an indication of the kind of stimulus that is effective in evoking the excitation of lateral-line receptors. In current textbooks the conclusion of Parker (1904) that the effective stimulus for the lateral line is low-frequency vibration, and that of Hofer (1907) that it is movement of water (i. e. local currents) have received most notice. The observations of Dykgraaf (1933), who employed the more refined methods of von Frisch’s futterdressur technique, support Hofer’s conclusion, and to some extent also Parker’s. Dykgraaf considers the lateral-line system to be an organ of Ferntastsinn , and if this is taken to mean a mechanoreceptor of such sensitivity that it can function both as a touch organ and as a receptor for disturbances coming from a distance, it is undoubtedly a true description, for it is fully confirmed by the direct electrophysiological studies of Hoagland (1933 a, b, c and d ) and of Schriever (1935). The latter, apparently unacquainted with Hoagland’s work, did little more than to confirm several of his observations.


2002 ◽  
Vol 88 (3) ◽  
pp. 1252-1262 ◽  
Author(s):  
Matthew S. Weeg ◽  
Andrew H. Bass

The mechanosensory lateral line of fish is a hair cell based sensory system that detects water motion using canal and superficial neuromasts. The trunk lateral line of the plainfin midshipman fish, Porichthys notatus, only has superficial neuromasts. The posterior lateral line nerve (PLLn) therefore innervates trunk superficial neuromasts exclusively and provides the opportunity to investigate the physiological responses of these receptors without the confounding influence of canal organs. We recorded single-unit activity from PLLn primary afferents in response to a vibrating sphere stimulus calibrated to produce an equal velocity across frequencies. Threshold tuning, isovelocity, and input/output curves were constructed using spike rate and vector strength, a measure of phase locking of spike times to the stimulus waveform. All units responded maximally to frequencies of 20–50 Hz. Units were classified as low-pass, band-pass, broadly tuned, or complex based on the shapes of tuning and isovelocity curves between 20 and 100 Hz. A 100 Hz stimulus caused an increase in spike rate in almost 50%, and significant synchronization in >80%, of all units. Midshipman vocalizations contain significant energy at and below 100 Hz, so these results demonstrate that the midshipman peripheral lateral line system can encode these acoustic signals. These results provide the first direct demonstration that units innervating superficial neuromasts in a teleost fish have heterogeneous frequency response properties, including an upper range of sensitivity that overlaps spectral peaks of behaviorally relevant acoustic stimuli.


1995 ◽  
Vol 198 (12) ◽  
pp. 2581-2591 ◽  
Author(s):  
T G Deliagina ◽  
F Ullén ◽  
M-J. Gonzalez ◽  
H Ehrsson ◽  
G N Orlovsky ◽  
...  

The lateral line system of lampreys includes photoreceptors distributed in the skin of the tail region. These are innervated by the trunk lateral line nerves, and the afferents terminate bilaterally in the medial octavolateral nucleus, crossing the midline through the cerebellar commissure. Stimulation of the dermal photoreceptors by tail illumination initiates locomotion. The present study was performed to characterize the response to illumination in larval and adult lampreys in detail and to elucidate the neuronal pathways responsible for the activation of locomotion. In both larval and adult quiescent lampreys, the response to unilateral illumination of the tail was found to consist of an initial turn followed by rectilinear swimming. The sign and magnitude of the turning angle were not correlated with the laterality of the optic stimulus. In mechanically restrained lampreys, spinalized at the level of segments 15­20, tail illumination evoked a complex motor response in the rostral part of the body, with switches between different patterns of coordination (turns in different directions, locomotion, and turns combined with locomotion). Thus, the response to tail illumination is not a simple reflex, but includes a behavioural choice. Reticulospinal neurones play a crucial role in the initiation of locomotion in lampreys. The response to unilateral tail illumination in rhombencephalic reticular cells was studied with extracellular single-unit recordings. It was found that neurones in the middle and posterior rhombencephalic reticular nuclei were activated bilaterally. Tonic activity or slow bursts (<0.5 Hz) were evoked, in some cases lasting up to 60 s after the stimulation. The response remained bilateral after transection of one lateral line nerve and the cerebellar commissure. Afferents from one side can thus activate reticulospinal cells on both sides through a pathway outside the cerebellar commissure. This bilateral activation of reticulospinal neurones is presumably responsible for the activation of spinal locomotor networks, without any directional bias to the left or the right side, and for the rectilinear swimming observed in behavioural experiments. In the caudal part of the termination area of the lateral line nerve afferents, neurones with contralateral projections were retrogradely stained with horseradish peroxidase. These neurones appear to be likely candidates for mediating the contralateral effects of the lateral line fibres.


2021 ◽  
Author(s):  
Qiuxiang Zhang ◽  
Katie Kindt

Hair cells are the sensory receptors in the auditory and vestibular systems of all vertebrates, and in the lateral-line system of aquatic vertebrates. During development, spontaneous activity in hair cells shapes the formation of these sensory systems. In auditory hair cells of mice, coordinated waves of spontaneous activity can be triggered by concomitant activity in nearby supporting cells. But in mammals, developing auditory and vestibular hair cells can also autonomously generate spontaneous events independent of supporting cell activity. To date, significant progress has been made studying spontaneous activity in the auditory and vestibular systems of mammals, in isolated cultures. The purpose of this work is to explore the zebrafish lateral-line system as a model to study and understand spontaneous activity in vivo. Our work applies genetically encoded calcium indicators along with light-sheet fluorescence microscopy to visualize spontaneous calcium activity in the developing lateral-line system. Consistent with our previous work, we show that spontaneous calcium activity is present in developing lateral-line hair cells. We now show that supporting cells that surround hair cells, and cholinergic efferent terminals that directly contact hair cells are also spontaneously active. Using two-color functional imaging we demonstrate that spontaneous activity in hair cells does not correlate with activity in either supporting cells or cholinergic terminals. We find that during lateral-line development, hair cells autonomously generate spontaneous events. Using localized calcium indicators, we show that within hair cells, spontaneous calcium activity occurs in two distinct domains-the mechanosensory bundle and the presynapse. Further, spontaneous activity in the mechanosensory bundle ultimately drives spontaneous calcium influx at the presynapse. Comprehensively, our results indicate that in developing lateral-line hair cells, autonomously generated spontaneous activity originates with spontaneous mechanosensory events. Overall, with robust spontaneous activity three different cell types, the developing lateral line is a rich model to study these activities in an intact sensory organ. Future work studying this model may further our understanding of these activities and their role in sensory system formation, function and regeneration.


Author(s):  
Jennifer D. Liddicoat ◽  
B. L. Roberts

The sense organs of the lateral-line system of lower aquatic vertebrates are mechanoreceptors which respond to water movements. They are distributed over the body, usually in lines which form a definite pattern on the head and along each side of the trunk. In the Cyclostomes the sense organs project from the body surface ('free neuromasts'); in other aquatic vertebrates they are usually housed in canals which are sunk into the dermis and which open at regular intervals to the exterior, although in some teleosts and in all modern amphibia the canal system has been secondarily lost and the neuromasts are once again situated externally.


Sign in / Sign up

Export Citation Format

Share Document