scholarly journals Functional Architecture of the Inner Pore of a Voltage-gated Ca2+ Channel

2005 ◽  
Vol 126 (3) ◽  
pp. 193-204 ◽  
Author(s):  
Xiao-guang Zhen ◽  
Cheng Xie ◽  
Aileen Fitzmaurice ◽  
Carl E. Schoonover ◽  
Eleza T. Orenstein ◽  
...  

The inner pore of voltage-gated Ca2+ channels (VGCCs) is functionally important, but little is known about the architecture of this region. In K+ channels, this part of the pore is formed by the S6/M2 transmembrane segments from four symmetrically arranged subunits. The Ca2+ channel pore, however, is formed by four asymmetric domains of the same (α1) subunit. Here we investigated the architecture of the inner pore of P/Q-type Ca2+ channels using the substituted-cysteine accessibility method. Many positions in the S6 segments of all four repeats of the α1 subunit (Cav2.1) were modified by internal methanethiosulfonate ethyltrimethylammonium (MTSET). However, the pattern of modification does not fit any known sequence alignment with K+ channels. In IIS6, five consecutive positions showed clear modification, suggesting a likely aqueous crevice and a loose packing between S6 and S5 segments, a notion further supported by the observation that some S5 positions were also accessible to internal MTSET. These results indicate that the inner pore of VGCCs is indeed formed by the S6 segments but is different from that of K+ channels. Interestingly some residues in IIIS6 and IVS6 whose mutations in L-type Ca2+ channels affect the binding of dihydropyridines and phenylalkylamines and are thought to face the pore appeared not to react with internal MTSET. Probing with qBBr, a rigid thiol-reactive agent with a dimension of 12 Å × 10 Å × 6 Å suggests that the inner pore can open to >10 Å. This work provides an impetus for future studies on ion permeation, gating, and drug binding of VGCCs.

2005 ◽  
Vol 126 (3) ◽  
pp. 205-212 ◽  
Author(s):  
Cheng Xie ◽  
Xiao-guang Zhen ◽  
Jian Yang

Ion channels open and close in response to changes in transmembrane voltage or ligand concentration. Recent studies show that K+ channels possess two gates, one at the intracellular end of the pore and the other at the selectivity filter. In this study we determined the location of the activation gate in a voltage-gated Ca2+ channel (VGCC) by examining the open/closed state dependence of the rate of modification by intracellular methanethiosulfonate ethyltrimethylammonium (MTSET) of pore-lining cysteines engineered in the S6 segments of the α1 subunit of P/Q type Ca2+ channels. We found that positions above the putative membrane/cytoplasm interface, including two positions below the corresponding S6 bundle crossing in K+ channels, showed pronounced state-dependent accessibility to internal MTSET, reacting ∼1,000-fold faster with MTSET in the open state than in the closed state. In contrast, a position at or below the putative membrane/cytoplasm interface was modified equally rapidly in both the open and closed states. Our results suggest that the S6 helices of the α1 subunit of VGCCs undergo conformation changes during gating and the activation gate is located at the intracellular end of the pore.


Planta Medica ◽  
2014 ◽  
Vol 80 (06) ◽  
pp. 465-472 ◽  
Author(s):  
Xiaomin Hou ◽  
Yu Liu ◽  
Longgang Niu ◽  
Lijuan Cui ◽  
Mingsheng Zhang

2009 ◽  
Vol 109 (1) ◽  
pp. 168-181 ◽  
Author(s):  
Rosa Luisi ◽  
Elisabetta Panza ◽  
Vincenzo Barrese ◽  
Fabio Arturo Iannotti ◽  
Davide Viggiano ◽  
...  
Keyword(s):  
Type K ◽  

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Calcium (Ca2+) channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [127] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [70]. Most Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high- to moderate-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains and a pore-forming region between transmembrane domains S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. All of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.


2017 ◽  
Vol 150 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Jessica R. Thomas ◽  
Jussara Hagen ◽  
Daniel Soh ◽  
Amy Lee

Voltage-gated Cav2.1 (P/Q-type) Ca2+ channels undergo Ca2+-dependent inactivation (CDI) and facilitation (CDF), both of which contribute to short-term synaptic plasticity. Both CDI and CDF are mediated by calmodulin (CaM) binding to sites in the C-terminal domain of the Cav2.1 α1 subunit, most notably to a consensus CaM-binding IQ-like (IQ) domain. Closely related Cav2.2 (N-type) channels display CDI but not CDF, despite overall conservation of the IQ and additional sites (pre-IQ, EF-hand–like [EF] domain, and CaM-binding domain) that regulate CDF of Cav2.1. Here we investigate the molecular determinants that prevent Cav2.2 channels from undergoing CDF. Although alternative splicing of C-terminal exons regulates CDF of Cav2.1, the splicing of analogous exons in Cav2.2 does not reveal CDF. Transfer of sequences encoding the Cav2.1 EF, pre-IQ, and IQ together (EF-pre-IQ-IQ), but not individually, are sufficient to support CDF in chimeric Cav2.2 channels; Cav2.1 chimeras containing the corresponding domains of Cav2.2, either alone or together, fail to undergo CDF. In contrast to the weak binding of CaM to just the pre-IQ and IQ of Cav2.2, CaM binds to the EF-pre-IQ-IQ of Cav2.2 as well as to the corresponding domains of Cav2.1. Therefore, the lack of CDF in Cav2.2 likely arises from an inability of its EF-pre-IQ-IQ to transduce the effects of CaM rather than weak binding to CaM per se. Our results reveal a functional divergence in the CDF regulatory domains of Cav2 channels, which may help to diversify the modes by which Cav2.1 and Cav2.2 can modify synaptic transmission.


2012 ◽  
Vol 9 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Sérgio José Macedo-Junior ◽  
Francisney Pinto Nascimento ◽  
Murilo Luiz-Cerutti ◽  
Adair Roberto Soares Santos

1992 ◽  
Vol 262 (1) ◽  
pp. F151-F157 ◽  
Author(s):  
G. V. Desir ◽  
H. A. Hamlin ◽  
E. Puente ◽  
R. F. Reilly ◽  
F. Hildebrandt ◽  
...  

Epithelial voltage-gated potassium (K) channels have been well studied using electrophysiological methods, but little is known about their structures. We tested the hypothesis that some of these channels belong to the Shaker gene family, which encodes voltage-gated K channels in excitable tissues. From published sequences of Shaker proteins in Drosophila, rat, and mouse brain, we chose regions that were conserved between species. Based on these protein sequences, degenerate oligonucleotides flanking the putative voltage sensor (S4) were synthesized and used as primers for the polymerase chain reaction. Five Shaker-like cDNAs were amplified from rabbit kidney cortex and three from LLC-PK1, an epithelial cell line derived from pig kidney. Each partial-length rabbit kidney cDNA is approximately 850 base pairs (bp) long. The deduced amino acid sequences contain five putative transmembrane segments and are 79-97% identical to two Shaker isoforms expressed in rat brain (RBK1 and RBK2). Sequence similarity is greatest in the putative transmembrane segments S1-S5. Importantly, the S4 segment, the putative voltage gate is highly conserved in all 5 cDNAs. Southern analysis of rabbit genomic DNA suggests that each isoform is encoded by a different gene. The partial length LLC-PK1 cDNAs are 450-bp long, and the deduced amino acid sequences are 77-99% identical to the rabbit cDNAs. This is, to our knowledge, the first demonstration that Shaker-like genes are expressed in renal epithelial cells. These genes most likely encode voltage-gated K channels involved in renal epithelial K transport.


2002 ◽  
Vol 120 (5) ◽  
pp. 663-676 ◽  
Author(s):  
Zhe Lu ◽  
Angela M. Klem ◽  
Yajamana Ramu

Current through voltage-gated K+ channels underlies the action potential encoding the electrical signal in excitable cells. The four subunits of a voltage-gated K+ channel each have six transmembrane segments (S1–S6), whereas some other K+ channels, such as eukaryotic inward rectifier K+ channels and the prokaryotic KcsA channel, have only two transmembrane segments (M1 and M2). A voltage-gated K+ channel is formed by an ion-pore module (S5–S6, equivalent to M1–M2) and the surrounding voltage-sensing modules. The S4 segments are the primary voltage sensors while the intracellular activation gate is located near the COOH-terminal end of S6, although the coupling mechanism between them remains unknown. In the present study, we found that two short, complementary sequences in voltage-gated K+ channels are essential for coupling the voltage sensors to the intracellular activation gate. One sequence is the so called S4–S5 linker distal to the voltage-sensing S4, while the other is around the COOH-terminal end of S6, a region containing the actual gate-forming residues.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Ca2+ channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [127] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [70]. Most Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high- to moderate-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains (S1-S6) and a pore-forming region between S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. All of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.


Sign in / Sign up

Export Citation Format

Share Document