scholarly journals Localization of the Activation Gate of a Voltage-gated Ca2+ Channel

2005 ◽  
Vol 126 (3) ◽  
pp. 205-212 ◽  
Author(s):  
Cheng Xie ◽  
Xiao-guang Zhen ◽  
Jian Yang

Ion channels open and close in response to changes in transmembrane voltage or ligand concentration. Recent studies show that K+ channels possess two gates, one at the intracellular end of the pore and the other at the selectivity filter. In this study we determined the location of the activation gate in a voltage-gated Ca2+ channel (VGCC) by examining the open/closed state dependence of the rate of modification by intracellular methanethiosulfonate ethyltrimethylammonium (MTSET) of pore-lining cysteines engineered in the S6 segments of the α1 subunit of P/Q type Ca2+ channels. We found that positions above the putative membrane/cytoplasm interface, including two positions below the corresponding S6 bundle crossing in K+ channels, showed pronounced state-dependent accessibility to internal MTSET, reacting ∼1,000-fold faster with MTSET in the open state than in the closed state. In contrast, a position at or below the putative membrane/cytoplasm interface was modified equally rapidly in both the open and closed states. Our results suggest that the S6 helices of the α1 subunit of VGCCs undergo conformation changes during gating and the activation gate is located at the intracellular end of the pore.

2005 ◽  
Vol 126 (3) ◽  
pp. 193-204 ◽  
Author(s):  
Xiao-guang Zhen ◽  
Cheng Xie ◽  
Aileen Fitzmaurice ◽  
Carl E. Schoonover ◽  
Eleza T. Orenstein ◽  
...  

The inner pore of voltage-gated Ca2+ channels (VGCCs) is functionally important, but little is known about the architecture of this region. In K+ channels, this part of the pore is formed by the S6/M2 transmembrane segments from four symmetrically arranged subunits. The Ca2+ channel pore, however, is formed by four asymmetric domains of the same (α1) subunit. Here we investigated the architecture of the inner pore of P/Q-type Ca2+ channels using the substituted-cysteine accessibility method. Many positions in the S6 segments of all four repeats of the α1 subunit (Cav2.1) were modified by internal methanethiosulfonate ethyltrimethylammonium (MTSET). However, the pattern of modification does not fit any known sequence alignment with K+ channels. In IIS6, five consecutive positions showed clear modification, suggesting a likely aqueous crevice and a loose packing between S6 and S5 segments, a notion further supported by the observation that some S5 positions were also accessible to internal MTSET. These results indicate that the inner pore of VGCCs is indeed formed by the S6 segments but is different from that of K+ channels. Interestingly some residues in IIIS6 and IVS6 whose mutations in L-type Ca2+ channels affect the binding of dihydropyridines and phenylalkylamines and are thought to face the pore appeared not to react with internal MTSET. Probing with qBBr, a rigid thiol-reactive agent with a dimension of 12 Å × 10 Å × 6 Å suggests that the inner pore can open to >10 Å. This work provides an impetus for future studies on ion permeation, gating, and drug binding of VGCCs.


Planta Medica ◽  
2014 ◽  
Vol 80 (06) ◽  
pp. 465-472 ◽  
Author(s):  
Xiaomin Hou ◽  
Yu Liu ◽  
Longgang Niu ◽  
Lijuan Cui ◽  
Mingsheng Zhang

2009 ◽  
Vol 109 (1) ◽  
pp. 168-181 ◽  
Author(s):  
Rosa Luisi ◽  
Elisabetta Panza ◽  
Vincenzo Barrese ◽  
Fabio Arturo Iannotti ◽  
Davide Viggiano ◽  
...  
Keyword(s):  
Type K ◽  

2001 ◽  
Vol 117 (2) ◽  
pp. 91-102 ◽  
Author(s):  
Ki Soon Shin ◽  
Brad S. Rothberg ◽  
Gary Yellen

Hyperpolarization-activated cation currents (Ih) are key determinants of repetitive electrical activity in heart and nerve cells. The bradycardic agent ZD7288 is a selective blocker of these currents. We studied the mechanism for ZD7288 blockade of cloned Ih channels in excised inside-out patches. ZD7288 blockade of the mammalian mHCN1 channel appeared to require opening of the channel, but strong hyperpolarization disfavored blockade. The steepness of this voltage-dependent effect (an apparent valence of ∼4) makes it unlikely to arise solely from a direct effect of voltage on blocker binding. Instead, it probably indicates a differential affinity of the blocker for different channel conformations. Similar properties were seen for ZD7288 blockade of the sea urchin homologue of Ih channels (SPIH), but some of the blockade was irreversible. To explore the molecular basis for the difference in reversibility, we constructed chimeric channels from mHCN1 and SPIH and localized the structural determinant for the reversibility to three residues in the S6 region likely to line the pore. Using a triple point mutant in S6, we also revealed the trapping of ZD7288 by the closing of the channel. Overall, the observations led us to hypothesize that the residues responsible for ZD7288 block of Ih channels are located in the pore lining, and are guarded by an intracellular activation gate of the channel.


2006 ◽  
Vol 128 (4) ◽  
pp. 423-441 ◽  
Author(s):  
Weiyan Li ◽  
Richard W. Aldrich

Crystal structures of potassium channels have strongly corroborated an earlier hypothetical picture based on functional studies, in which the channel gate was located on the cytoplasmic side of the pore. However, accessibility studies on several types of ligand-sensitive K+ channels have suggested that their activation gates may be located near or within the selectivity filter instead. It remains to be determined to what extent the physical location of the gate is conserved across the large K+ channel family. Direct evidence about the location of the gate in large conductance calcium-activated K+ (BK) channels, which are gated by both voltage and ligand (calcium), has been scarce. Our earlier kinetic measurements of the block of BK channels by internal quaternary ammonium ions have raised the possibility that they may lack a cytoplasmic gate. We show in this study that a synthesized Shaker ball peptide (ShBP) homologue acts as a state-dependent blocker for BK channels when applied internally, suggesting a widening at the intracellular end of the channel pore upon gating. This is consistent with a gating-related conformational change at the cytoplasmic end of the pore-lining helices, as suggested by previous functional and structural studies on other K+ channels. Furthermore, our results from two BK channel mutations demonstrate that similar types of interactions between ball peptides and channels are shared by BK and other K+ channel types.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
William A. Catterall ◽  
Edward Perez-Reyes ◽  
Terrance P. Snutch ◽  
Jörg Striessnig

Calcium (Ca2+) channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca2+channels was proposed by [127] and approved by the NC-IUPHAR Subcommittee on Ca2+ channels [70]. Most Ca2+ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, CaV1.x) channels; (2) the high- to moderate-voltage activated dihydropyridine-insensitive (CaV2.x) channels and (3) the low-voltage-activated (T-type, CaV3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains and a pore-forming region between transmembrane domains S5 and S6. Voltage-dependent gating is driven by the membrane spanning S4 segment, which contains highly conserved positive charges that respond to changes in membrane potential. All of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.


2017 ◽  
Vol 150 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Jessica R. Thomas ◽  
Jussara Hagen ◽  
Daniel Soh ◽  
Amy Lee

Voltage-gated Cav2.1 (P/Q-type) Ca2+ channels undergo Ca2+-dependent inactivation (CDI) and facilitation (CDF), both of which contribute to short-term synaptic plasticity. Both CDI and CDF are mediated by calmodulin (CaM) binding to sites in the C-terminal domain of the Cav2.1 α1 subunit, most notably to a consensus CaM-binding IQ-like (IQ) domain. Closely related Cav2.2 (N-type) channels display CDI but not CDF, despite overall conservation of the IQ and additional sites (pre-IQ, EF-hand–like [EF] domain, and CaM-binding domain) that regulate CDF of Cav2.1. Here we investigate the molecular determinants that prevent Cav2.2 channels from undergoing CDF. Although alternative splicing of C-terminal exons regulates CDF of Cav2.1, the splicing of analogous exons in Cav2.2 does not reveal CDF. Transfer of sequences encoding the Cav2.1 EF, pre-IQ, and IQ together (EF-pre-IQ-IQ), but not individually, are sufficient to support CDF in chimeric Cav2.2 channels; Cav2.1 chimeras containing the corresponding domains of Cav2.2, either alone or together, fail to undergo CDF. In contrast to the weak binding of CaM to just the pre-IQ and IQ of Cav2.2, CaM binds to the EF-pre-IQ-IQ of Cav2.2 as well as to the corresponding domains of Cav2.1. Therefore, the lack of CDF in Cav2.2 likely arises from an inability of its EF-pre-IQ-IQ to transduce the effects of CaM rather than weak binding to CaM per se. Our results reveal a functional divergence in the CDF regulatory domains of Cav2 channels, which may help to diversify the modes by which Cav2.1 and Cav2.2 can modify synaptic transmission.


2012 ◽  
Vol 9 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Sérgio José Macedo-Junior ◽  
Francisney Pinto Nascimento ◽  
Murilo Luiz-Cerutti ◽  
Adair Roberto Soares Santos

2016 ◽  
Vol 113 (25) ◽  
pp. 6991-6996 ◽  
Author(s):  
Jiusheng Yan ◽  
Qin Li ◽  
Richard W. Aldrich

Ion channels regulate ion flow by opening and closing their pore gates. K+ channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and normally show no C-type inactivation. We hypothesized that the BK channel’s activation gate may spatially overlap or coexist with the C-type inactivation gate at or near the selectivity filter. We induced C-type inactivation in BK channels and studied the relationship between activation/deactivation and C-type inactivation/recovery. We observed prominent slow C-type inactivation/recovery in BK channels by an extreme low concentration of extracellular K+ together with a Y294E/K/Q/S or Y279F mutation whose equivalent in Shaker channels (T449E/K/D/Q/S or W434F) caused a greatly accelerated rate of C-type inactivation or constitutive C-inactivation. C-type inactivation in most K+ channels occurs upon sustained membrane depolarization or channel opening and then recovers during hyperpolarized membrane potentials or channel closure. However, we found that the BK channel C-type inactivation occurred during hyperpolarized membrane potentials or with decreased intracellular calcium ([Ca2+]i) and recovered with depolarized membrane potentials or elevated [Ca2+]i. Constitutively open mutation prevented BK channels from C-type inactivation. We concluded that BK channel C-type inactivation is closed state-dependent and that its extents and rates inversely correlate with channel-open probability. Because C-type inactivation can involve multiple conformational changes at the selectivity filter, we propose that the BK channel’s normal closing may represent an early conformational stage of C-type inactivation.


2002 ◽  
Vol 120 (5) ◽  
pp. 663-676 ◽  
Author(s):  
Zhe Lu ◽  
Angela M. Klem ◽  
Yajamana Ramu

Current through voltage-gated K+ channels underlies the action potential encoding the electrical signal in excitable cells. The four subunits of a voltage-gated K+ channel each have six transmembrane segments (S1–S6), whereas some other K+ channels, such as eukaryotic inward rectifier K+ channels and the prokaryotic KcsA channel, have only two transmembrane segments (M1 and M2). A voltage-gated K+ channel is formed by an ion-pore module (S5–S6, equivalent to M1–M2) and the surrounding voltage-sensing modules. The S4 segments are the primary voltage sensors while the intracellular activation gate is located near the COOH-terminal end of S6, although the coupling mechanism between them remains unknown. In the present study, we found that two short, complementary sequences in voltage-gated K+ channels are essential for coupling the voltage sensors to the intracellular activation gate. One sequence is the so called S4–S5 linker distal to the voltage-sensing S4, while the other is around the COOH-terminal end of S6, a region containing the actual gate-forming residues.


Sign in / Sign up

Export Citation Format

Share Document