scholarly journals One drug-sensitive subunit is sufficient for a near-maximal retigabine effect in KCNQ channels

2018 ◽  
Vol 150 (10) ◽  
pp. 1421-1431 ◽  
Author(s):  
Michael C. Yau ◽  
Robin Y. Kim ◽  
Caroline K. Wang ◽  
Jingru Li ◽  
Tarek Ammar ◽  
...  

Retigabine is an antiepileptic drug and the first voltage-gated potassium (Kv) channel opener to be approved for human therapeutic use. Retigabine is thought to interact with a conserved Trp side chain in the pore of KCNQ2–5 (Kv7.2–7.5) channels, causing a pronounced hyperpolarizing shift in the voltage dependence of activation. In this study, we investigate the functional stoichiometry of retigabine actions by manipulating the number of retigabine-sensitive subunits in concatenated KCNQ3 channel tetramers. We demonstrate that intermediate retigabine concentrations cause channels to exhibit biphasic conductance–voltage relationships rather than progressive concentration-dependent shifts. This suggests that retigabine can exert its effects in a nearly “all-or-none” manner, such that channels exhibit either fully shifted or unshifted behavior. Supporting this notion, concatenated channels containing only a single retigabine-sensitive subunit exhibit a nearly maximal retigabine effect. Also, rapid solution exchange experiments reveal delayed kinetics during channel closure, as retigabine dissociates from channels with multiple drug-sensitive subunits. Collectively, these data suggest that a single retigabine-sensitive subunit can generate a large shift of the KCNQ3 conductance–voltage relationship. In a companion study (Wang et al. 2018. J. Gen. Physiol. https://doi.org/10.1085/jgp.201812014), we contrast these findings with the stoichiometry of a voltage sensor-targeted KCNQ channel opener (ICA-069673), which requires four drug-sensitive subunits for maximal effect.

2018 ◽  
Vol 150 (10) ◽  
pp. 1432-1443 ◽  
Author(s):  
Alice W. Wang ◽  
Michael C. Yau ◽  
Caroline K. Wang ◽  
Nazlee Sharmin ◽  
Runying Y. Yang ◽  
...  

KCNQ2-5 (Kv7.2–Kv7.5) channels are strongly influenced by an emerging class of small-molecule channel activators. Retigabine is the prototypical KCNQ activator that is thought to bind within the pore. It requires the presence of a Trp side chain that is conserved among retigabine-sensitive channels but absent in the retigabine-insensitive KCNQ1 subtype. Recent work has demonstrated that certain KCNQ openers are insensitive to mutations of this conserved Trp, and that their effects are instead abolished or attenuated by mutations in the voltage-sensing domain (VSD). In this study, we investigate the stoichiometry of a VSD-targeted KCNQ2 channel activator, ICA-069673, by forming concatenated channel constructs with varying numbers of drug-insensitive subunits. In homomeric WT KCNQ2 channels, ICA-069673 strongly stabilizes an activated channel conformation, which is reflected in the pronounced deceleration of deactivation and leftward shift of the conductance–voltage relationship. A full complement of four drug-sensitive subunits is required for maximal sensitivity to ICA-069673—even a single drug-insensitive subunit leads to significantly weakened effects. In a companion article (see Yau et al. in this issue), we demonstrate very different stoichiometry for the action of retigabine on KCNQ3, for which a single retigabine-sensitive subunit enables near-maximal effect. Together, these studies highlight fundamental differences in the site and mechanism of activation between retigabine and voltage sensor–targeted KCNQ openers.


2017 ◽  
Vol 114 (45) ◽  
pp. E9702-E9711 ◽  
Author(s):  
Robin Y. Kim ◽  
Stephan A. Pless ◽  
Harley T. Kurata

Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2–5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation. To elucidate how the retigabine binding site is coupled to changes in voltage sensing, we used voltage-clamp fluorometry to track conformational changes of the KCNQ3 voltage-sensing domains (VSDs) in response to voltage, retigabine, and PIP2. Steady-state ionic conductance and voltage sensor fluorescence closely overlap under basal PIP2 conditions. Retigabine stabilizes the conducting conformation of the pore and the activated voltage sensor conformation, leading to dramatic deceleration of current and fluorescence deactivation, but these effects are attenuated upon disruption of channel:PIP2 interactions. These findings reveal an important role for PIP2 in coupling retigabine binding to altered VSD function. We identify a polybasic motif in the proximal C terminus of retigabine-sensitive KCNQ channels that contributes to VSD–pore coupling via PIP2, and thereby influences the unique gating effects of retigabine.


1986 ◽  
Vol 87 (5) ◽  
pp. 795-816 ◽  
Author(s):  
D R Matteson ◽  
R P Swenson

We have examined the effects of a variety of monovalent cations on K channel gating in squid giant axons. The addition of the permeant cations K, Rb, or Cs to the external medium decreases the channel closing rate and causes a negative shift of the conductance-voltage relationship. Both of these effects are larger in Rb than in K. The opening kinetics of the K channel are, on the other hand, unaffected by these monovalent cations. Other permeant species, like NH4 and Tl, slightly increase the closing rate, whereas the relatively impermeant cations Na, Li, and Tris have little or no effect on K channel gating. The permeant cations have different effects on the reversal potential and the shape of the instantaneous current-voltage relationship. These effects give information about entry and binding of the cations in K channels. Rb, for example, enters the pore readily (large shift of the reversal potential), but binds tightly to the channel interior, inhibiting current flow. We find a correlation between the occupancy of the channel by a monovalent cation and the closing rate, and conclude that the presence of a monovalent cation in the pore inhibits channel closing, and thereby causes a leftward shift in the activation-voltage curve. In causing these effects, the cations appear to bind near the inner surface of the membrane.


2002 ◽  
Vol 282 (2) ◽  
pp. H531-H539 ◽  
Author(s):  
Cevher Ozcan ◽  
Martin Bienengraeber ◽  
Petras P. Dzeja ◽  
Andre Terzic

K+ channel openers have been recently recognized for their ability to protect mitochondria from anoxic injury. Yet the mechanism responsible for mitochondrial preservation under oxidative stress is not fully understood. Here, mitochondria were isolated from rat hearts and subjected to 20-min anoxia, followed by reoxygenation. At reoxygenation, increased generation of reactive oxygen species (ROS) was associated with reduced ADP-stimulated oxygen consumption, blunted ATP production, and disrupted mitochondrial structural integrity coupled with cytochrome c release. The prototype K+ channel opener diazoxide markedly reduced mitochondrial ROS production at reoxygenation with a half-maximal effect of 29 μM. Diazoxide also preserved oxidative phosphorylation and mitochondrial membrane integrity, as indicated by electron microscopy and reduced cytochrome c release. The protective effect of diazoxide was reproduced by the structurally distinct K+ channel opener nicorandil and antagonized by 5-hydroxydecanoic acid, a short-chain fatty acid derivative and presumed blocker of mitochondrial ATP-sensitive K+ channels. Opener-mediated mitochondrial protection was simulated by the free radical scavenger system composed of superoxide dismutase and catalase. However, the effect of openers on ROS production was maintained in nominally K+-free medium in the presence or absence of the K+ ionophore valinomycin and was mimicked by malonate, a modulator of the mitochondrial redox state. This suggests the existence of a K+ conductance-independent pathway for mitochondrial protection targeted by K+ channel openers. Thus the cardioprotecive mechanism of K+ channel openers includes direct attenuation of mitochondrial oxidant stress at reoxygenation.


2013 ◽  
Vol 141 (2) ◽  
pp. 203-216 ◽  
Author(s):  
Mirela Milescu ◽  
Hwa C. Lee ◽  
Chan Hyung Bae ◽  
Jae Il Kim ◽  
Kenton J. Swartz

Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms commonly target the S1–S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this tarantula toxin interacts with the S1–S4 domain and inhibits opening by stabilizing a closed state. Here we investigated the interaction of hanatoxin with the Shaker Kv channel, a voltage-activated channel that has been extensively studied with biophysical approaches. In contrast to what is observed in the Kv2.1 channel, we find that hanatoxin shifts the conductance–voltage relation to negative voltages, making it easier to open the channel with membrane depolarization. Although these actions of the toxin are subtle in the wild-type channel, strengthening the toxin–channel interaction with mutations in the S3b helix of the S1-S4 domain enhances toxin affinity and causes large shifts in the conductance–voltage relationship. Using a range of previously characterized mutants of the Shaker Kv channel, we find that hanatoxin stabilizes an activated conformation of the voltage sensors, in addition to promoting opening through an effect on the final opening transition. Chimeras in which S3b–S4 paddle motifs are transferred between Kv2.1 and Shaker Kv channels, as well as experiments with the related tarantula toxin GxTx-1E, lead us to conclude that the actions of tarantula toxins are not simply a product of where they bind to the channel, but that fine structural details of the toxin–channel interface determine whether a toxin is an inhibitor or opener.


2017 ◽  
Vol 313 (2) ◽  
pp. C173-C186 ◽  
Author(s):  
Jessica E. Tanis ◽  
Zhongming Ma ◽  
J. Kevin Foskett

Calcium homeostasis modulator protein-1 (CALHM1) and its Caenorhabditis elegans (ce) homolog, CLHM-1, belong to a new family of physiologically important ion channels that are regulated by voltage and extracellular Ca2+ (Ca2+o) but lack a canonical voltage-sensing domain. Consequently, the intrinsic voltage-dependent gating mechanisms for CALHM channels are unknown. Here, we performed voltage-clamp experiments on ceCLHM-1 chimeric, deletion, insertion, and point mutants to assess the role of the NH2 terminus (NT) in CALHM channel gating. Analyses of chimeric channels in which the ceCLHM-1 and human (h)CALHM1 NH2 termini were interchanged showed that the hCALHM1 NT destabilized channel-closed states, whereas the ceCLHM-1 NT had a stabilizing effect. In the absence of Ca2+o, deletion of up to eight amino acids from the ceCLHM-1 NT caused a hyperpolarizing shift in the conductance-voltage relationship with little effect on voltage-dependent slope. However, deletion of nine or more amino acids decreased voltage dependence and induced a residual conductance at hyperpolarized voltages. Insertion of amino acids into the NH2-terminal helix also decreased voltage dependence but did not prevent channel closure. Mutation of ceCLHM-1 valine 9 and glutamine 13 altered half-maximal activation and voltage dependence, respectively, in 0 Ca2+. In 2 mM Ca2+o, ceCLHM-1 NH2-terminal deletion and point mutant channels closed completely at hyperpolarized voltages with apparent affinity for Ca2+o indistinguishable from wild-type ceCLHM-1, although the ceCLHM-1 valine 9 mutant exhibited an altered conductance-voltage relationship and kinetics. We conclude that the NT plays critical roles modulating voltage dependence and stabilizing the closed states of CALHM channels.


Sign in / Sign up

Export Citation Format

Share Document