scholarly journals The Donnan-dominated resting state of skeletal muscle fibers contributes to resilience and longevity in dystrophic fibers

2021 ◽  
Vol 154 (1) ◽  
Author(s):  
Catherine E. Morris ◽  
Joshua J. Wheeler ◽  
Béla Joos

Duchenne muscular dystrophy (DMD) is an X-linked dystrophin-minus muscle-wasting disease. Ion homeostasis in skeletal muscle fibers underperforms as DMD progresses. But though DMD renders these excitable cells intolerant of exertion, sodium overloaded, depolarized, and spontaneously contractile, they can survive for several decades. We show computationally that underpinning this longevity is a strikingly frugal, robust Pump-Leak/Donnan (P-L/D) ion homeostatic process. Unlike neurons, which operate with a costly “Pump-Leak–dominated” ion homeostatic steady state, skeletal muscle fibers operate with a low-cost “Donnan-dominated” ion homeostatic steady state that combines a large chloride permeability with an exceptionally small sodium permeability. Simultaneously, this combination keeps fiber excitability low and minimizes pump expenditures. As mechanically active, long-lived multinucleate cells, skeletal muscle fibers have evolved to handle overexertion, sarcolemmal tears, ischemic bouts, etc.; the frugality of their Donnan dominated steady state lets them maintain the outsized pump reserves that make them resilient during these inevitable transient emergencies. Here, P-L/D model variants challenged with DMD-type insult/injury (low pump-strength, overstimulation, leaky Nav and cation channels) show how chronic “nonosmotic” sodium overload (observed in DMD patients) develops. Profoundly severe DMD ion homeostatic insult/injury causes spontaneous firing (and, consequently, unwanted excitation–contraction coupling) that elicits cytotoxic swelling. Therefore, boosting operational pump-strength and/or diminishing sodium and cation channel leaks should help extend DMD fiber longevity.

2020 ◽  
Author(s):  
Catherine E Morris ◽  
Joshua J Wheeler ◽  
Béla Joos

ABSTRACTThe inherited muscle-wasting disease, Duchenne muscular dystrophy (DMD), renders skeletal muscle fibers (SMFs) Na+-overloaded, ischemic, membrane-damaged, cation-leaky, depolarized, and prone to myogenic firing. DMD fibers nevertheless survive up to 3 decades before succumbing to Ca2+-necrosis. The Ca2+-necrosis is explicable, the longevity is not. Modeling here shows that SMFs’ ion homeostasis strategy, a low-cost resilient Pump-Leak/Donnan feedback process we term “Donnan dominated”, underpins that longevity. Together, SMFs’ huge chloride-permeability and tiny sodium-permeability minimize excitability and pump costs, facilitating the outsized SMF pump-reserve that lets DMD fibers withstand deep ischemia and leaky channels. We illustrate how, as these impairments intensify, patients’ chronic Na+-overload (now non-invasively evident via Na23-MRI) would change. In simulations, prolonged excitation (→physiological Na+-overloading) and/or intense ischemia (→too little Na+-pumping) and accumulated bleb-damage (→too much Na+-leaking) eventually trigger Ca2+-overloading conditions. Our analysis implies an urgent need to identify SMFs’ pivotal small PNa, thereby opening new therapeutic remediation routes.


2020 ◽  
Author(s):  
Béla Joos ◽  
Catherine E Morris

ABSTRACTSkeletal muscle fibers (SMFs) and neurons are low and high duty-cycle excitable cells constituting exceptionally large and extraordinarily small fractions of vertebrate bodies. The immense ClC-1-based chloride-permeability (PCl) of SMFs has thwarted understanding of their Pump-Leak/Donnan (P-L/D) ion homeostasis. After formally defining P-L/D set-points and feedbacks, we therefore devise a simple yet demonstrably realistic model for SMFs. Hyper-stimulated, it approximates rodent fibers’ ouabain-sensitive ATP-consumption. Size-matched neuron-model/SMF-model comparisons reveal steady-states occupying two ends of an energetics/resilience P-L/D continuum. Excitable neurons’ costly vulnerable process is Pump-Leak dominated. Electrically-reluctant SMFs’ robust low-cost process is Donnan dominated: collaboratively, Donnan effectors and [big PCl] stabilize Vrest, while SMFs’ exquisitely small PNa minimizes ATP-consumption, thus maximizing resilience. “Classic” excitable cell homeostasis ([small PCl][big INaleak]), de rigueur for electrically-agile neurons, is untenable for vertebrates’ (including humans’) major tissue. Vertebrate bodies evolved thanks to syncytially-efficient SMFs using a Donnan dominated ([big PCl][small INaleak]) ion homeostatic strategy.


1998 ◽  
Vol 111 (4) ◽  
pp. 505-519 ◽  
Author(s):  
Masato Konishi ◽  
Masaru Watanabe

The steady state relation between cytoplasmic Ca2+ concentration ([Ca2+]i) and force was studied in intact skeletal muscle fibers of frogs. Intact twitch fibers were injected with the dextran-conjugated Ca2+ indicator, fura dextran, and the fluorescence signals of fura dextran were converted to [Ca2+]i using calibration parameters previously estimated in permeabilized muscle fibers (Konishi and Watanabe. 1995. J. Gen. Physiol. 106:1123–1150). In the first series of experiments, [Ca2+]i and isometric force were simultaneously measured during high K+ depolarization. Slow changes in [Ca2+]i and force induced by 15–30 mM K+ appeared to be in equilibrium, as instantaneous [Ca2+]i versus force plot tracked the common path in the rising and relaxation phases of K+ contractures. In the second series of experiments, 2,5-di-tert-butylhydroquinone (TBQ), an inhibitor of the sarcoplasmic reticulum Ca2+ pump, was used to decrease the rate of decline of [Ca2+]i after tetanic stimulation. The decay time courses of both [Ca2+]i and force were dose-dependently slowed by TBQ up to 5 μM; the instantaneous [Ca2+]i– force relations were nearly identical at ≥1 μM TBQ, suggesting that the change in [Ca2+]i was slow enough to reach equilibrium with force. The [Ca2+]i–force data obtained from the two types of experiments were consistent with the Hill curve using a Hill coefficient of 3.2–3.9 and [Ca2+]i for half activation (Ca50) of 1.5–1.7 μM. However, if fura dextran reacts with Ca2+ with a 2.5-fold greater Kd as previously estimated from the kinetic fitting (Konishi and Watanabe. 1995. J. Gen. Physiol. 106:1123–1150), Ca50 would be 3.7–4.2 μM. We also studied the [Ca2+]–force relation in skinned fibers under similar experimental conditions. The average Hill coefficient and Ca50 were estimated to be 3.3 and 1.8 μM, respectively. Although uncertainties remain about the precise levels of [Ca2+]i, we conclude that the steady state force is a 3rd to 4th power function of [Ca2+]i, and Ca50 is in the low micromolar range in intact frog muscle fibers, which is in reasonable agreement with results obtained from skinned fibers.


Author(s):  
I. Taylor ◽  
P. Ingram ◽  
J.R. Sommer

In studying quick-frozen single intact skeletal muscle fibers for structural and microchemical alterations that occur milliseconds, and fractions thereof, after electrical stimulation, we have developed a method to compare, directly, ice crystal formation in freeze-substituted thin sections adjacent to all, and beneath the last, freeze-dried cryosections. We have observed images in the cryosections that to our knowledge have not been published heretofore (Figs.1-4). The main features are that isolated, sometimes large regions of the sections appear hazy and have much less contrast than adjacent regions. Sometimes within the hazy regions there are smaller areas that appear crinkled and have much more contrast. We have also observed that while the hazy areas remain still, the regions of higher contrast visibly contract in the beam, often causing tears in the sections that are clearly not caused by ice crystals (Fig.3, arrows).


Author(s):  
Leonardo Hernández

The influence of Ca2+ and other divalent cations on contractile responses of slow skeletal muscle fibers of the frog (Rana pipiens) under conditions of chronic denervation was investigated.Isometric tension was recorded from slow bundles of normal and denervated cruralis muscle in normal solution and in solutions with free calcium concentration solution or in solutions where other divalent cations (Sr2+, Ni2+, Co2+ or Mn2+) substituted for calcium. In the second week after nerve section, in Ca2+-free solutions, we observed that contractures (evoked from 40 to 80 mM-K+) of non-denervated muscles showed significantly higher tensions (p<0.05), than those from denervated bundles. Likewise, in solutions where calcium was substituted by all divalent cations tested, with exception of Mn2+, the denervated bundles displayed lower tension than non-denervated, also in the second week of denervation. In this case, the Ca2+ substitution by Sr2+ caused the higher decrease in tension, followed by Co2+ and Ni2+, which were different to non-denervated bundles, as the lowest tension was developed by Mn2+, followed by Co2+, and then Ni2+ and Sr2+. After the third week, we observed a recovery in tension. These results suggest that denervation altering the binding capacity to divalent cations of the voltage sensor.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kazuki Yamamoto ◽  
Nao Yamaoka ◽  
Yu Imaizumi ◽  
Takunori Nagashima ◽  
Taiki Furutani ◽  
...  

A three-dimensional human neuromuscular tissue model that mimics the physically separated structures of motor neurons and skeletal muscle fibers is presented.


Sign in / Sign up

Export Citation Format

Share Document