scholarly journals The Permeability of the Sodium Channel to Organic Cations in Myelinated Nerve

1971 ◽  
Vol 58 (6) ◽  
pp. 599-619 ◽  
Author(s):  
Bertil Hille

The relative permeability of sodium channels to 21 organic cations was studied in myelinated nerve fibers. Ionic currents under voltage-clamp conditions were measured in sodium-free solutions containing the test cation. The measured reversal potential and the Goldman equation were used to calculate relative permeabilities. The permeability sequence was: sodium ≈ hydroxylamine > hydrazine > ammonium ≈ formamidine ≈ guanidine ≈ hydroxyguanidine > aminoguanididine >> methylamine. The cations of the following compounds were not measurably permeant: N-methylhydroxylamine, methylhydrazine, methylamine, methylguanidine, acetamidine, dimethylamine, tetramethylammonium, tetraethylammonium, ethanolamine, choline, tris(hydroxymethyl)amino methane, imidazole, biguanide, and triaminoguanidine. Thus methyl and methylene groups render cations impermeant. The results can be explained on geometrical grounds by assuming that the sodium channel is an oxygen-lined pore about 3 A by 5 A in cross-section. One pair of oxygens is assumed to be an ionized carboxylic acid. Methyl and amino groups are wider than the 3 A width of the channel. Nevertheless, cations containing amino groups can slide through the channel by making hydrogen bonds to the oxygens. However, methyl groups, being unable to form hydrogen bonds, are too wide to pass through.

1972 ◽  
Vol 59 (6) ◽  
pp. 637-658 ◽  
Author(s):  
Bertil Hille

The relative permeability of sodium channels to eight metal cations is studied in myelinated nerve fibers. Ionic currents under voltage-clamp conditions are measured in Na-free solutions containing the test ion. Measured reversal potentials and the Goldman equation are used to calculate the permeability sequence: Na+ ≈ Li+ > Tl+ > K+. The ratio PK/PNa is 1/12. The permeabilities to Rb+, Cs+, Ca++, and Mg++ are too small to measure. The permeability ratios agree with observations on the squid giant axon and show that the reversal potential ENa differs significantly from the Nernst potential for Na+ in normal axons. Opening and closing rates for sodium channels are relatively insensitive to the ionic composition of the bathing medium, implying that gating is a structural property of the channel rather than a result of the movement or accumulation of particular ions around the channel. A previously proposed pore model of the channel accommodates the permeant metal cations in a partly hydrated form. The observed sequence of permeabilities follows the order expected for binding to a high field strength anion in Eisenman's theory of ion exchange equilibria.


1976 ◽  
Vol 68 (5) ◽  
pp. 551-562 ◽  
Author(s):  
L Binstock

The relative permeability of sodium channels to organic cations was determined in the Myxicola giant axon. Ionic currents under potential control were measured in seawater and in sodium-free solutions containing the organic cation. The measured reversal potential and the Goldman equation were used to obtain the relative permeabilities. The permeability sequence was found to be: sodium greater than hydroxylamine greater than hydrazine greater than ammonium greater than guanidine greater than formamidine greater than aminoguanidine greater than methylamine. Measurements were also made on sodium and several of the organic cations at different concentrations. The relative permeabilities of the ions were found to be independent of concentration. Qualitatively, the permeability sequence for the Myxicola giant axon was similar to that of the frog node of Ranvier.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jose L. Rivera ◽  
Pedro Navarro-Santos ◽  
Roberto Guerra-Gonzalez ◽  
Enrique Lima

We carried out first principles calculations to show that polymerizable structures containing hydroxyl (alcoholic chain) and amino groups are suitable to form stable complexes with dibenzothiophene (DBT) and its alkyl derivates. These sulfur pollutants are very difficult to eliminate through traditional catalytic processes. Spontaneous and exothermic interactions at 0 K primarily occur through the formation of stable complexes of organosulfur molecules with monomeric structures by hydrogen bonds. The bonds are formed between the sulfur atom and the hydrogen of the hydroxyl group; additional hydrogen bonds are formed between the hydrogen atoms of the organosulfur molecule and the nitrogen atoms of the monomers. We vary the number of methylene groups in the alcoholic chain containing the hydroxyl group of the monomer and find that the monomeric structure with four methylene groups has the best selectivity towards the interaction with the methyl derivates with reference to the interaction with DBT. Even this study does not consider solvent and competitive adsorption effects; our results show that monomeric structures containing amino and hydroxyl groups can be used to develop adsorbents to eliminate organosulfur pollutants from oil and its derivates.


1990 ◽  
Vol 110 (4) ◽  
pp. 1341-1352 ◽  
Author(s):  
E Kordeli ◽  
J Davis ◽  
B Trapp ◽  
V Bennett

Two variants of ankyrin have been distinguished in rat brain tissue using antibodies: a broadly distributed isoform (ankyrinB) that represents the major form of ankyrin in brain and another isoform with a restricted distribution (ankyrinR) that shares epitopes with erythrocyte ankyrin. The ankyrinR isoform was localized by immunofluorescence in cryosections of rat spinal cord gray matter and myelinated central and peripheral nerves to: (a) perikarya and initial axonal segments of neuron cells, (b) nodes of Ranvier of myelinated nerve with no detectable labeling in other areas of the myelinated axons, and (c) the axolemma of unmyelinated axons. Immunogold EM on ultrathin cryosections of myelinated nerve showed that ankyrinR was localized on the cytoplasmic face of the axolemma and was restricted to the nodal and, in some cases, paranodal area. The major isoform of ankyrin in brain (ankyrinB) displayed a broad distribution on glial and neuronal cells of the gray matter and a mainly glial distribution in central myelinated axons with no significant labeling on the axolemma. These results show that (a) ankyrin isoforms display a differential distribution on glial and neuronal cells of the nervous tissue; (b) an isoform of ankyrin codistributes with the voltage-dependent sodium channel in both myelinated and unmyelinated nerve fibers. Ankyrin interacts in vitro with the voltage-dependent sodium channel (Srinivasan, Y., L. Elmer, J. Davis, V. Bennett, and K. Angelides. 1988. Nature (Lond.). 333:177-180). A specific interaction of an isoform of ankyrin with the sodium channel thus may play an important role in the morphogenesis and/or maintenance of the node of Ranvier.


Author(s):  
Z. M. Yaschyshyn ◽  
S. L. Popel

The aim: to study the dynamics of histological and ultrastructural changes in muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia at different stages of ontogenesis. Methods. Studied skeletal muscles and their peripheral nervous apparatus of laboratory male Wistar rats aged 30 to 270 days. The restriction of motor activity was carried out in special canister cells for 30, 60, 90, and 240 days (5 animals for each term). To determine the type of muscle fiber, the Nahlas histochemical method was used, the Kulchitsky method was used to detect myelinated nerve fibers, the Bilshovsky-Gros method and the electron microscopic method to identify neuromuscular endings. Results. The data of histological and electron microscopic examination of skeletal muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia indicate their regular restructuring during the development of muscles, the formation of their synapses and structures that are associated with them at different stages of ontogenesis. Conclusion. The study provides an in-depth understanding of the relative frequency and nature of the disturbance of the neuromuscular endings during prolonged hypokinesia and its effect on the dynamics of structural adjustment of individual types of muscle fibers in ontogenesis.


Author(s):  
Z. M. Yaschyshyn ◽  
S. L. Popel

The aim: to study the dynamics of histological and ultrastructural changes in muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia at different stages of ontogenesis. Methods. Studied skeletal muscles and their peripheral nervous apparatus of laboratory male Wistar rats aged 30 to 270 days. The restriction of motor activity was carried out in special canister cells for 30, 60, 90, and 240 days (5 animals for each term). To determine the type of muscle fiber, the Nahlas histochemical method was used, the Kulchitsky method was used to detect myelinated nerve fibers, the Bilshovsky-Gros method and the electron microscopic method to identify neuromuscular endings. Results. The data of histological and electron microscopic examination of skeletal muscle fibers and their neuromuscular endings under conditions of prolonged hypokinesia indicate their regular restructuring during the development of muscles, the formation of their synapses and structures that are associated with them at different stages of ontogenesis. Conclusion. The study provides an in-depth understanding of the relative frequency and nature of the disturbance of the neuromuscular endings during prolonged hypokinesia and its effect on the dynamics of structural adjustment of individual types of muscle fibers in ontogenesis.


Sign in / Sign up

Export Citation Format

Share Document