scholarly journals On the Mechanism of Sodium Extrusion across the Irrigated Gill of Sea Water-Adapted Rainbow Trout (Salmo gairdneri)

1974 ◽  
Vol 64 (2) ◽  
pp. 148-165 ◽  
Author(s):  
Leonard B. Kirschner ◽  
Lewis Greenwald ◽  
Martin Sanders

Sodium efflux (JoutNa) across the irrigated trout gill was rapid in sea water (SW), but only about 25 % as large in fresh water (FW). The difference correlated with a change in the potential difference across the gill (TEP). The latter was about +10 mV (blood positive) in SW, but –40 mV in FW. Both flux and electrical data indicated that gills in this fish are permeable to a variety of cations including Na+, K+, Mg2+, choline, and Tris. They are less permeable to anions; PNa:PK:PCl was estimated to be 1:10:0.3, and PCl > Pgluconate. The TEP was shown to be a diffusion potential determined by these permeabilities and the extant ionic gradients in SW, FW as well as in other media. JoutNa appeared to be diffusive in all of the experiments undertaken. Exchange diffusion need not be posited, and the question of whether there is an active component remains open.

1974 ◽  
Vol 64 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Lewis Greenwald ◽  
Leonard B. Kirschner ◽  
Martin Sanders

Sodium extrusion (JoutNa) was measured across the gills of rainbow trout, Salmo gairdneri, adapted to sea water (SW) using a gill-irrigation system of small volume. The potential difference (TEP) was also measured under similar conditions. JoutNa was usually between 100–250 µeq (100 g)–1 h–1, about an order of magnitude faster than in fresh water (FW)-adapted trout, but slower than has been reported for any other marine teleost. The TEP was between 10–11 mV, body fluids positive to SW. When the external medium was changed from SW to FW JoutNa was reduced to about 25 % of the initial value, and the TEP was reduced by 40–50 mV (i.e. body fluids negative by 30–40 mV). Addition of either Na+ or K+ in SW concentrations reversed the changes; JoutNa increased and the gill repolarized. The electrical behavior and sodium efflux in irrigated trout gill is qualitatively the same as has been reported for unanaesthetized, free-swimming fish of other species. Thus, the irrigated gill provides an adequate model for studying the mechanism of sodium extrusion in marine teleosts.


1969 ◽  
Vol 51 (3) ◽  
pp. 739-757
Author(s):  
P. G. SMITH

I. The effects of different external media on the sodium and chloride efflux in Artemia salina, the brine shrimp, have been observed, using animals acclimatized to sea water. In sea water, both sodium and chloride fluxes across the epithelium are approximately 7,000 pmole cm.-2 sec.-1. 2. Sodium efflux drops markedly in sodium-free media, and chloride efflux falls in chloride-free media; the two effects are independent, and are not due to changes in external osmolarity. 3. The decreases in sodium efflux can be explained by changes in electrical potential difference and diffusional permeability; exchange diffusion of sodium does not occur. 4. Approximately 70% of the chloride efflux is due to exchange diffusion, and most of the remainder is due to active transport. 5. It is shown that graphs of ion efflux against external concentration which can be fitted by a Michaelis-Menten equation do not constitute evidence for the presence of exchange diffusion; graphs of similar shape can be obtained if the flux is simply diffusional. 6. The drinking rate, determined from the rate of uptake of 131I-polyvinylpyr-rolidone, is 36 pl. sec.-1, or 2.0% body weight hr.-1. 7. The diffusional influx of water is 240 pl. sec.-1.


1989 ◽  
Vol 141 (1) ◽  
pp. 407-418 ◽  
Author(s):  
Y. TANG ◽  
D. G. McDONALD ◽  
R. G. BOUTILIER

Blood acid-base regulation following exhaustive exercise was investigated in freshwater- (FW) and seawater- (SW) adapted rainbow trout (Salmo gairdneri) of the same genetic stock. Following exhaustive exercise at 10°C, both FW and SW trout displayed a mixed respiratory and metabolic blood acidosis. However, in FW trout the acidosis was about double that of SW trout and arterial blood pH took twice as long to correct. These SW/FW differences were related to the relative amounts of net H+ equivalent excretion to the environmental water, SW trout excreting five times as much as FW trout. The greater H+ equivalent excretion in SW trout may be secondary to changes in the gills that accompany the adaptation from FW to SW. It may also be related to the higher concentrations of HCO3− as well as other exchangeable counter-ions (Na+ and Cl−) in the external medium in SW compared to FW.


1974 ◽  
Vol 61 (2) ◽  
pp. 277-283
Author(s):  
DAVID H. EVANS ◽  
JEFFREY C. CARRIER ◽  
MARGARET B. BOGAN

1. A technique has been developed for the measurement of electrical potentials (TGP's) across the gills of free-swimming, Dormitator maculatus. 2. Transfer of fish to various KCl solutions is correlated with changes in the TGP, which are not of sufficient magnitude to account for the known potassium stimulation of sodium efflux from this species. 3. Transfer to potassium-free sea water results in little or no change in TGP while previous results have shown that such a transfer is correlated with a 22% reduction of sodium efflux. 4. Transfer to fresh water results in a reduction of TGP from +17 mV (inside positive) to -36 mV which is sufficient to account for the instantaneous reduction in sodium efflux previously shown for this species. 5. It is concluded that while changes in TGP can account for the ‘Na-free effect’ in D. maculatus they cannot account for the potassium effects on sodium extrusion. This supports the previous conclusion that sodium efflux and potassium influx are chemically linked in this species.


1979 ◽  
Vol 57 (10) ◽  
pp. 1863-1865 ◽  
Author(s):  
Roger M. Evans

Seawater-adapted teleosts drink to offset water loss by osmosis. A direct method of monitoring drinking by implanting a fistula to drain the stomach indicated that rainbow trout began drinking from about 9 to 12 (range 1 to 22) h after being placed in 15‰ sea water. Unlike the Japanese eel (Anguilla japonica). in which the onset of drinking has been shown to be immediate and reflex-like, the onset of drinking in trout appears to occur only after appreciable water has been lost to the medium. The trout resembles the eel in that the capacity to shallow water in the absence of postingestional negative feedback exceeds the rate of drinking required to maintain normal water balance.


1981 ◽  
Vol 89 (1) ◽  
pp. 135-140 ◽  
Author(s):  
BRIDGET I. BAKER ◽  
THERESA A. RANCE

When rainbow trout (Salmo gairdneri) and eels (Anguilla anguilla) were kept in black tanks for 3—4 weeks, their plasma cortisol titres were about fourfold higher than in fish kept in white tanks. In trout, the difference was apparent only under a long photoperiod of 16 h light: 8 h darkness, but in eels the difference was clear under both a long or short photoperiod (9·5 h light: 14·5 h darkness). It is suggested that the increase in plasma cortisol seen in black-adapted fish is dependent on either ACTH or MSH secreted by the pars intermedia melanotrophs. No difference was seen either in the total cortisol-binding capacity of the plasma nor in interrenal histology in trout from black or white backgrounds.


Sign in / Sign up

Export Citation Format

Share Document