The Effect of External Potassium Ions on the Electrical Potential Measured Across the Gills of the Teleost, Dormitator Maculatus

1974 ◽  
Vol 61 (2) ◽  
pp. 277-283
Author(s):  
DAVID H. EVANS ◽  
JEFFREY C. CARRIER ◽  
MARGARET B. BOGAN

1. A technique has been developed for the measurement of electrical potentials (TGP's) across the gills of free-swimming, Dormitator maculatus. 2. Transfer of fish to various KCl solutions is correlated with changes in the TGP, which are not of sufficient magnitude to account for the known potassium stimulation of sodium efflux from this species. 3. Transfer to potassium-free sea water results in little or no change in TGP while previous results have shown that such a transfer is correlated with a 22% reduction of sodium efflux. 4. Transfer to fresh water results in a reduction of TGP from +17 mV (inside positive) to -36 mV which is sufficient to account for the instantaneous reduction in sodium efflux previously shown for this species. 5. It is concluded that while changes in TGP can account for the ‘Na-free effect’ in D. maculatus they cannot account for the potassium effects on sodium extrusion. This supports the previous conclusion that sodium efflux and potassium influx are chemically linked in this species.

1973 ◽  
Vol 58 (3) ◽  
pp. 627-636
Author(s):  
DAVID H. EVANS ◽  
CHARLES H. MALLERY ◽  
LARRY KRAVITZ

1. The effect of external potassium ions on the extrusion of sodium ions by the seawater-acclimated fat sleeper, Dormitator maculatus, was investigated. 2. Removal of external potassium ions reduced the efflux of sodium from the fish by 22% while addition of 10-4 M ouabain reduced the efflux of sodium ions by 14%. 3. Addition of potassium ions to distilled-water baths into which fish were rapidly transferred stimulated sodium extrusion in a manner which could be described by the Michaelis-Menten equation. The Km of this potassium-stimulated sodium efflux was approximately 2 mM-K/1. 4. The calculated rate of sodium extrusion was 10 times the oral ingestion of sodium ions. 5. Biochemical assays of the levels of the enzyme Na-K-activated ATPase extracted from gill tissue determined that seawater-acclimated fish had 3 times the enzymic activity that fish acclimated to freshwater had. 6. In vitro potassium stimulation of the extracted Na-K-activated ATPase showed Michaelis-Menten kinetics with a Km of approximately 2 mM-K/l. 7. It is concluded that the extrusion of sodium ions by Dormitator maculatus acclimated to sea water is coupled with potassium uptake and is mediated by the enzyme Na-K-activated ATPase.


1971 ◽  
Vol 57 (2) ◽  
pp. 164-187 ◽  
Author(s):  
R. A. Sjodin

After a 20 min initial washout, the rate of loss of radioactively labeled sodium ions from sodium-enriched muscle cells is sensitive to the external sodium and potassium ion concentrations. In the absence of external potassium ions, the presence of external sodium ions increases the sodium efflux. In the presence of external potassium ions, the presence of external sodium ions decreases the sodium efflux. In the absence of external potassium ions about one-third of the Na+ efflux that depends upon the external sodium ion concentration can be abolished by 10-5 M glycoside. The glycoside-insensitive but external sodium-dependent Na+ efflux is uninfluenced by external potassium ions. In the absence of both external sodium and potassium ions the sodium efflux is relatively insensitive to the presence of 10-5 M glycoside. The maximal external sodium-dependent sodium efflux in the absence of external potassium ions is about 20% of the magnitude of the maximal potassium-dependent sodium efflux. The magnitude of the glycoside-sensitive sodium efflux in K-free Ringer solution is less than 10% of that observed when sodium efflux is maximally activated by potassium ions. The inhibition of the potassium-activated sodium efflux by external sodium ions is of the competitive type. Reducing the external sodium ion concentration displaces the plots of sodium extrusion rate vs. [K]o to the left and upwards.


1982 ◽  
Vol 80 (1) ◽  
pp. 125-147 ◽  
Author(s):  
M Haas ◽  
W F Schmidt ◽  
T J McManus

The transient increase in cation permeability observed in duck red cells incubated with norepinephrine has been shown to be a linked, bidirectional, co-transport of sodium plus potassium. This pathway, sensitive to loop diuretics such as furosemide, was found to have a [Na + K] stoichiometry of 1:1 under all conditions tested. Net sodium efflux was inhibited by increasing external potassium, and net potassium efflux was inhibited by increasing external sodium. Thus, the movement of either cation is coupled to, and can be driven by, the gradient of its co-ion. There is no evidence of trans stimulation of co-transport by either cation. The system also has a specific anion requirement satisfied only by chloride or bromide. Shifting the membrane potential by varying either external chloride (at constant internal chloride) or external potassium (at constant internal potassium in the presence of valinomycin and DIDs [4,4'-diisothiocyano-2,2'-disulfonic acid stilbene]), has no effect on nor-epinephrine-stimulated net sodium transport. Thus, this co-transport system is unaffected by membrane potential and is therefore electrically neutral. Finally, under the latter conditions-when Em was held constant near EK and chloride was not at equilibrium-net sodium extrusion against a substantial electrochemical gradient could be produced by lowering external chloride at high internal concentrations, thereby demonstrating that the anion gradient can also drive co-transport. We conclude, therefore, that chloride participates directly in the co-transport of [Na + K + 2Cl].


Parallel measurements have been made of the oxygen consumption and efflux of radioactive sodium in pairs of frog sartorius muscles. Calculation of the amount of secretory work necessary for an active extrusion of sodium at the observed rate showed that it would involve the utilization of about one-tenth of the energy available from resting metabolism.This figure may reasonably be regarded as a lower limit to the efficiency of the secretory mechanism. Some of the measurements were made in a potassium-free Ringer’s solution, and others with an external potassium concentration of 10mM. In the potassium-rich medium, both the sodium efflux and the oxygen consumption were increased, the proportion of the energy production required for sodium extrusion remaining roughly constant. The action of dinitrophenol and other metabolic inhibitors on the sodium efflux in sartorius muscles was examined, but there were no very obvious effects.


1985 ◽  
Vol 223 (1233) ◽  
pp. 449-457 ◽  

A study has been made with human red cells of sodium movements that are sensitive to the drug furosemide. The aim was to see if furosemide-sensitive movements that are symmetrical (exchange) became asymmetrical (net transport) on replacement of chloride with nitrate as the major external anion. Cells were incubated for 4 h at 37 °C with 140 mm sodium, and chloride or nitrate as the principal anion. Under a variety of conditions (presence and absence of ouabain or furosemide, or both) the cell sodium concentration was always higher when chloride was replaced with nitrate. The cells became leakier to sodium. Tracer studies indicated that, in contrast to the results in chloride medium, the decrease in sodium influx was greater than the fall in efflux when furosemide was added to cells in nitrate medium. The results confirm that the sensitivity of sodium efflux to furosemide depended on chloride. However, influx showed a different sensitivity in that furosemide still inhibited in cells incubated in nitrate medium. The stimulation of sodium influx with nitrate medium was independent of external potassium (10–50 mm) and the furosemide-sensitive influx was also constant. It is concluded that symmetrical transmembrane sodium movements with cells in chloride medium became downhill asymmetrical in nitrate medium, giving a net gain of cell sodium that was insensitive to ouabain and sensitive to furosemide. The drug thus partly retarded the gain of cell sodium that otherwise occurred in the somewhat leaky cells.


1969 ◽  
Vol 51 (3) ◽  
pp. 739-757
Author(s):  
P. G. SMITH

I. The effects of different external media on the sodium and chloride efflux in Artemia salina, the brine shrimp, have been observed, using animals acclimatized to sea water. In sea water, both sodium and chloride fluxes across the epithelium are approximately 7,000 pmole cm.-2 sec.-1. 2. Sodium efflux drops markedly in sodium-free media, and chloride efflux falls in chloride-free media; the two effects are independent, and are not due to changes in external osmolarity. 3. The decreases in sodium efflux can be explained by changes in electrical potential difference and diffusional permeability; exchange diffusion of sodium does not occur. 4. Approximately 70% of the chloride efflux is due to exchange diffusion, and most of the remainder is due to active transport. 5. It is shown that graphs of ion efflux against external concentration which can be fitted by a Michaelis-Menten equation do not constitute evidence for the presence of exchange diffusion; graphs of similar shape can be obtained if the flux is simply diffusional. 6. The drinking rate, determined from the rate of uptake of 131I-polyvinylpyr-rolidone, is 36 pl. sec.-1, or 2.0% body weight hr.-1. 7. The diffusional influx of water is 240 pl. sec.-1.


1981 ◽  
Vol 61 (3) ◽  
pp. 307-312 ◽  
Author(s):  
R. B. Jones ◽  
J. Patrick ◽  
P. J. Hilton

1. The effect of extracellular potassium on the transport of sodium and potassium in rat thymocytes has been studied in vitro. 2. A significant increase in the rate constant for total and ouabain-sensitive sodium efflux was demonstrated at an extracellular potassium concentration of 1 mmol/l as compared with that at either 0 or 2 mmol/l. 3. At potassium concentrations below 3 mmol/l ouabain-sensitive sodium influx was observed suggesting sodium-sodium exchange catalysed by the sodium pump. 4. Both total and ouabain-insensitive potassium efflux rose with external potassium. A small ouabain-sensitive potassium efflux was observed at all levels of external potassium studied. 5. Total and ouabain-insensitive potassium influx increased with external potassium, but did not appear to saturate. Ouabain-sensitive potassium influx reached a maximum at an external potassium concentration of 2 mmol/l then decreased with increasing external potassium.


1991 ◽  
Vol 128 (2) ◽  
pp. 297-304 ◽  
Author(s):  
R. M. Shepherd ◽  
R. Fraser ◽  
D. J. Nichols ◽  
C. J. Kenyon

ABSTRACT Angiotensin II (AII) stimulation of steroidogenesis is known to be associated with depolarization of the adrenocortical cell membrane. In these cells, membrane permeability to potassium ions governs electrical potential. The effects of All on the rate of efflux of K+ in relation to the control of aldosterone synthesis has been investigated in bovine adrenocortical cells preloaded with 43K. In static incubations, the pattern of 43K efflux fitted a model with two exponential components with t½ values of 47·7±1·7 and 14·2±0·6 (s.e.m.) min. AII increased the efflux rate of the slow-exchange component (t½ 37·1±0·6 min) and retarded efflux from the fast-exchange component. With ouabain present to prevent reuptake of the isotope, the rate of efflux for both components was increased in unstimulated cells (t½ 28·4±1·1 and 12·0±0·7 min). AII again increased the rate of efflux from the slow component (t½ = 24·2±1·7 min, P < 0·01) and retarded efflux from the fast component. These biphasic effects were apparent in cells treated with a range of AII concentrations (0·1 nmol/l–1 μmol/l) but the point in time at which increased efflux from the slower component predominated over retardation of the slow component was earlier for cells treated with 1 μmol AII/l than for cells treated with lower concentrations. We suggest that decreases and increases in K+ efflux caused by AII are associated with depolarization and repolarization respectively. Changes in intracellular concentrations of Ca2+ may link these events. Journal of Endocrinology (1991) 128, 297–304


1974 ◽  
Vol 64 (2) ◽  
pp. 148-165 ◽  
Author(s):  
Leonard B. Kirschner ◽  
Lewis Greenwald ◽  
Martin Sanders

Sodium efflux (JoutNa) across the irrigated trout gill was rapid in sea water (SW), but only about 25 % as large in fresh water (FW). The difference correlated with a change in the potential difference across the gill (TEP). The latter was about +10 mV (blood positive) in SW, but –40 mV in FW. Both flux and electrical data indicated that gills in this fish are permeable to a variety of cations including Na+, K+, Mg2+, choline, and Tris. They are less permeable to anions; PNa:PK:PCl was estimated to be 1:10:0.3, and PCl &gt; Pgluconate. The TEP was shown to be a diffusion potential determined by these permeabilities and the extant ionic gradients in SW, FW as well as in other media. JoutNa appeared to be diffusive in all of the experiments undertaken. Exchange diffusion need not be posited, and the question of whether there is an active component remains open.


1969 ◽  
Vol 54 (5) ◽  
pp. 664-674 ◽  
Author(s):  
R. A. Sjodin ◽  
L. A. Beauge

The sensitivity of sodium efflux to the removal of potassium ions from the external solution and the change in sodium efflux occurring when sodium ions are also removed were observed to be related. When Tris was used to replace external sodium ions, increases in sodium efflux were always observed whether the sensitivity of sodium efflux to external potassium ions was weak or strong. Greater percentage increases in sodium efflux occurred, however, the greater the sensitivity of sodium efflux to external potassium ions. When lithium ions were used to replace external sodium ions, increases in sodium efflux occurred if the sensitivity of efflux to external potassium ions was strong whereas decreases in sodium efflux took place if the sensitivity of efflux to external potassium ions was weak. Intermediate sensitivities of efflux to external potassium resulted in no change in efflux upon substitution of lithium ions for external sodium ions. In the presence of 10-5 M ouabain, substitution of Tris for external sodium ions always resulted in a small decrease in sodium efflux. The data can be described in terms of a model which assumes the presence of efflux stimulation sites that are about 98% selective to potassium ions and about 2% selective to sodium or lithium ions.


Sign in / Sign up

Export Citation Format

Share Document