Onset and rate of drinking in rainbow trout (Salmo gairdneri) following transfer to dilute seawater

1979 ◽  
Vol 57 (10) ◽  
pp. 1863-1865 ◽  
Author(s):  
Roger M. Evans

Seawater-adapted teleosts drink to offset water loss by osmosis. A direct method of monitoring drinking by implanting a fistula to drain the stomach indicated that rainbow trout began drinking from about 9 to 12 (range 1 to 22) h after being placed in 15‰ sea water. Unlike the Japanese eel (Anguilla japonica). in which the onset of drinking has been shown to be immediate and reflex-like, the onset of drinking in trout appears to occur only after appreciable water has been lost to the medium. The trout resembles the eel in that the capacity to shallow water in the absence of postingestional negative feedback exceeds the rate of drinking required to maintain normal water balance.


1979 ◽  
Vol 83 (1) ◽  
pp. 193-202
Author(s):  
R. N. BATH ◽  
F. B. EDDY

Physiological responses of rainbow trout (mean weight 13.3 g) to sudden changes in salinity were investigated. An initial period lasting about 8 h was characterized by increased drinking and an increase in plasma and body ions. Fish failed to survive more than 2 days in full strength sea water but in two-thirds sea water there were few mortalities and adaptation was complete in 7–10 days. During this period there were gradual physiological changes resulting in normal plasma ion concentrations but significantly increased body ionic content. The intracellular concentrations of muscle chloride showed the greatest increase.



1989 ◽  
Vol 141 (1) ◽  
pp. 407-418 ◽  
Author(s):  
Y. TANG ◽  
D. G. McDONALD ◽  
R. G. BOUTILIER

Blood acid-base regulation following exhaustive exercise was investigated in freshwater- (FW) and seawater- (SW) adapted rainbow trout (Salmo gairdneri) of the same genetic stock. Following exhaustive exercise at 10°C, both FW and SW trout displayed a mixed respiratory and metabolic blood acidosis. However, in FW trout the acidosis was about double that of SW trout and arterial blood pH took twice as long to correct. These SW/FW differences were related to the relative amounts of net H+ equivalent excretion to the environmental water, SW trout excreting five times as much as FW trout. The greater H+ equivalent excretion in SW trout may be secondary to changes in the gills that accompany the adaptation from FW to SW. It may also be related to the higher concentrations of HCO3− as well as other exchangeable counter-ions (Na+ and Cl−) in the external medium in SW compared to FW.









1984 ◽  
Vol 41 (11) ◽  
pp. 1678-1685 ◽  
Author(s):  
Michael A. Giles

Rainbow trout (Salmo gairdneri) were exposed to 3.6 and 6.4 μg Cd/L for periods up to 178 d. Transitory changes in plasma calcium and magnesium were observed in fish exposed to 3.6 μg Cd/L although the differences were not significant. Exposure to 6.4 μg Cd/L, however, resulted in significantly lowered plasma sodium, potassium, calcium, and chloride and elevated magnesium concentrations. Analyses of urine indicated that the rate of urine production, osmolality, and sodium, potassium, chloride, magnesium, calcium, and protein concentrations were unaffected by exposure to 3.6 μg Cd/L although slight changes were observed in the first week of exposure. Urine production rate and urinary concentrations of potassium and chloride were unaffected in trout exposed to 6.4 μg Cd/L but sodium, protein, and osmolality were elevated and calcium and magnesium concentrations reduced in these fish. The results demonstrate that the majority of the cadmium-induced electrolyte imbalances do not result from impairment of renal function.



Sign in / Sign up

Export Citation Format

Share Document