K-band light curves for RR Lyrae stars in the globular clusters M5 and M92

1992 ◽  
Vol 104 ◽  
pp. 159 ◽  
Author(s):  
Jesper Storm ◽  
Bruce W. Carney ◽  
David W. Latham
2006 ◽  
Vol 2 (S240) ◽  
pp. 605-612
Author(s):  
G. García Lugo ◽  
A. Arellano Ferro ◽  
Patricia Rosenzweig

AbstractThe V and R light curves for 30 RR Lyrae stars in M15 were used to calculate their physical parameters. The Blazhko effect, previously reported in V12, was not detected. The determined values of the iron content and distance of the cluster are: [Fe/H] = −1.98 ± 0.24 and d = 8.67 ± 0.41 kpc, respectively. The mean values of the physical parameters determined for the RR Lyrae stars place the cluster precisely into the sequences Oosterhoff type – metallicity and metallicity – effective temperature, valid for globular clusters.


2002 ◽  
Vol 185 ◽  
pp. 122-123
Author(s):  
Andrew Layden

RR Lyrae stars (RRL) are a favourite standard candle for globular clusters and other old stellar populations, yet recent absolute magnitude calibrations, MV(RR), span more than 0.2 mag. Precise distance estimates for nearby globular clusters will eventually be available through satellite-based trigonometric parallaxes (Layden, these proceedings), thus providing a resolution to this old problem.Here, we present a progress report on our high quality time-series photometry of RRL in the nearby globular cluster NGC 3201 - the first obtained for this cluster with a CCD. The resulting light curves provide accurate intensity-mean apparent magnitudes and reddening estimates, which will in turn be used to calibrate MV(RR) once a satellite-based parallax for NGC 3201 is available.


2004 ◽  
Vol 193 ◽  
pp. 113-123
Author(s):  
M. Catelan

AbstractI point out that the Oosterhoff dichotomy for globular cluster and field RR Lyrae stars may place the strongest constraints so far on the number of dwarf spheroidal-like protogalactic fragments that may have contributed to the formation of the Galactic halo. The first calibration of the RR Lyrae period-luminosity relation in I, J, H, K taking evolutionary effects into account is provided. Problems in the interpretation of RR Lyrae light curves and evolutionary properties are briefly reviewed.


1989 ◽  
Vol 111 ◽  
pp. 287-287
Author(s):  
Amelia Wehlau

AbstractAttention is called to the rather unusual distribution of the periods of the RR Lyrae variables in NGC 5897, a metal-poor halo globular cluster with a very low central concentration. Of the seven RR Lyrae stars known in the cluster, three have periods between 0.797 and 0.856 day and two have periods of 0.45 and 0.42 day. The other two have periods of 0.34 and 0.35 day with much lower amplitudes of variation. Due to the lack of crowding in this cluster photoelectric observations and Fourier decompositions of the resulting light curves should be possible for at least six of the RR Lyrae variables. In addition, the cluster appears to contain a non-variable horizontal branch star, SK 120, lying within the instability strip. As this is the only well documented case of such a star, photoelectric observations of this star would also be desirable.


1975 ◽  
Vol 67 ◽  
pp. 541-543
Author(s):  
A. V. Mironov ◽  
N. N. Samus'

The dependences of the numbers of variable stars in globular clusters on the chemical composition are studied. For given metallicity the numbers of RR Lyrae stars reduced to some definite total number of stars in the cluster are different for the two groups of globular clusters introduced by Mironov.


1973 ◽  
Vol 21 ◽  
pp. 196-196
Author(s):  
T. S. Van Albada ◽  
Norman Baker

AbstractThe observational evidence leading to the classification, following Oosterhoff, of globular clusters containing RR Lyrae stars into two distinct groups, is summarized and discussed in the light of results of stellar evolution theory and pulsation theory. The dichotomy is caused, at least in part, by a dichotomy in the ‘transition period’ between the type-ab and type-c stars which reflects a difference in effective temperature at the transition point. When this difference is accounted for, there remains a smaller average difference between the groups, though no longer a clear dichotomy, that is probably a mass and luminosity effect. If this remaining difference is interpreted as a luminosity effect the average difference in luminosity between the two Oosterhoff groups is at most 0.1 mag. It is suggested that Christy’s theoretical relationship between transition period and luminosity cannot be valid, at least not for clusters of different Oosterhoff groups. It is conjectured that the transition-temperature dichotomy may be a reflection of different predominant directions of evolution along the horizontal branch, accompanied by a hysteresis effect in the pulsations.


2000 ◽  
Vol 176 ◽  
pp. 172-175 ◽  
Author(s):  
G. Clementini ◽  
A. Bragaglia ◽  
L. Di Fabrizio ◽  
E. Carretta ◽  
R. G. Gratton

AbstractThe Large Magellanic Cloud (LMC) is widely considered a corner-stone of the astronomical distance scale. However, a difference of 0.2−0.3 mag exists in its distance as predicted by the short and long distance scales. Distances to the LMC from Population II objects are founded on the RR Lyrae variables. We have undertaken an observational campaign devoted to the definition of the average apparent luminosity, and to the study of the mass–metallicity relation for RR Lyrae stars in the bar of the LMC. These are compared with analogous quantities for cluster RR Lyrae stars. The purpose is to see whether an intrinsic difference in luminosity, possibly due to a difference in mass, might exist between field and cluster RR Lyrae stars, which could be responsible for the well-known dichotomy between short and long distance scales. Preliminary results are presented on the V and B − V light curves, the average apparent visual magnitude, and the pulsational properties of 102 RR Lyrae stars in the bar of the LMC, observed at ESO in January 1999. The photometric data are accurately tied to the Johnson photometric system. Comparison is presented with the photometry of RR Lyrae stars in the bar of the LMC obtained by the MACHO collaboration (Alcock et al. 1996). Our sample includes 9 double-mode RR Lyrae stars selected from Alcock et al. (1997) for which an estimate of the metal abundance from the ΔS method is presented.


2004 ◽  
Vol 193 ◽  
pp. 171-175
Author(s):  
Johanna Jurcsik

AbstractThe light curve characteristics of a homogeneous sample of variables in M3 are studied in detail. Accurate light curves and mean magnitudes of about 100 RRab and 50 RRc stars which do not show any type of modulation are analyzed. According to their mean magnitudes and Fourier parameters the variables can be sorted into four groups, representing different stages of the horizontal branch stellar evolution.


1993 ◽  
Vol 139 ◽  
pp. 337-337
Author(s):  
Martha L. Hazen

A search for variable stars in the globular cluster NGC 6544 has revealed only one possible short period variable within the tidal radius of the cluster. A search in NGC 6642 yielded 16 new RR Lyrae stars within the tidal radius and 5 new field RRs. The previously discovered (Hoffleit 1972) V1 is a slow variable, and V2 is an RR Lyrae star. Photometry of the variables within the tidal radius gives a mean B for the horizontal branch of < B > = 17.0 mag. With E(B – V) = 0.37 mag and (B – V) = 0.35 mag for RR Lyraes, a value for V(HB) = 16.3 mag is derived. This is about one mag fainter than previous estimates (Webbink 1985), and places NGC 6642 at a distance of approximately 7.9 kpc.


Sign in / Sign up

Export Citation Format

Share Document