Rapid rotation and stellar activity in the triple system HD 165590

1983 ◽  
Vol 267 ◽  
pp. 232 ◽  
Author(s):  
R. A. Stern ◽  
A. Skumanich

Author(s):  
Arthur Young ◽  
Andrew Skumanich ◽  
Keith MacGregor ◽  
Scott Temple


2016 ◽  
Vol 10 (3) ◽  
pp. 259-270
Author(s):  
Ludmila Matienko ◽  
◽  
Larisa Mosolova ◽  
Vladimir Binyukov ◽  
Gennady Zaikov ◽  
...  

Mechanism of catalysis with binary and triple catalytic systems based on redox inactive metal (lithium) compound {LiSt+L2} and {LiSt+L2+PhOH} (L2=DMF or HMPA), in the selective ethylbenzene oxidation by dioxygen into -phenylethyl hydroperoxide is researched. The results are compared with catalysis by nickel-lithium triple system {NiII(acac)2+LiSt+PhOH} in selective ethylbenzene oxidation to PEH. The role of H-bonding in mechanism of catalysis is discussed. The possibility of the stable supramolecular nanostructures formation on the basis of triple systems, {LiSt+L2+PhOH}, due to intermolecular H-bonds, is researched with the AFM method.



1998 ◽  
Vol 506 (1) ◽  
pp. 347-359 ◽  
Author(s):  
David Barrado y Navascués ◽  
John R. Stauffer ◽  
Sofia Randich


2009 ◽  
Vol 5 (S264) ◽  
pp. 385-394 ◽  
Author(s):  
J.-M. Grießmeier ◽  
M. Khodachenko ◽  
H. Lammer ◽  
J. L. Grenfell ◽  
A. Stadelmann ◽  
...  

AbstractStellar activity has a particularly strong influence on planets at small orbital distances, such as close-in exoplanets. For such planets, we present two extreme cases of stellar variability, namely stellar coronal mass ejections and stellar wind, which both result in the planetary environment being variable on a timescale of billions of years. For both cases, direct interaction of the streaming plasma with the planetary atmosphere would entail servere consequences. In certain cases, however, the planetary atmosphere can be effectively shielded by a strong planetary magnetic field. The efficiency of this shielding is determined by the planetary magnetic dipole moment, which is difficult to constrain by either models or observations. We present different factors which influence the strength of the planetary magnetic dipole moment. Implications are discussed, including nonthermal atmospheric loss, atmospheric biomarkers, and planetary habitability.





2021 ◽  
Vol 503 (4) ◽  
pp. 5397-5408
Author(s):  
Mukremin Kilic ◽  
P Bergeron ◽  
Simon Blouin ◽  
A Bédard

ABSTRACT We present an analysis of the most massive white dwarf candidates in the Montreal White Dwarf Database 100 pc sample. We identify 25 objects that would be more massive than $1.3\, {\rm M}_{\odot }$ if they had pure H atmospheres and CO cores, including two outliers with unusually high photometric mass estimates near the Chandrasekhar limit. We provide follow-up spectroscopy of these two white dwarfs and show that they are indeed significantly below this limit. We expand our model calculations for CO core white dwarfs up to M = 1.334 M⊙, which corresponds to the high-density limit of our equation-of-state tables, ρ = 109 g cm−3. We find many objects close to this maximum mass of our CO core models. A significant fraction of ultramassive white dwarfs are predicted to form through binary mergers. Merger populations can reveal themselves through their kinematics, magnetism, or rapid rotation rates. We identify four outliers in transverse velocity, four likely magnetic white dwarfs (one of which is also an outlier in transverse velocity), and one with rapid rotation, indicating that at least 8 of the 25 ultramassive white dwarfs in our sample are likely merger products.



Author(s):  
Ceren Kamil ◽  
Hasan Ali Dal

AbstractThe results are presented for eclipsing binary KIC 2557430. The mass ratio was computed as 0.868 ± 0.002, while the inclination (i) was found as 69°.75 ± 0°.01 with T2 = 6271±1 K. 50 frequencies were found in the period analysis. 48 frequencies of them are caused due to the primary component, a γ Doradus star, while two of them are caused by the cool spots. 69 flares were detected in the analyses. Two OPEA models were derived for flares, which indicates that the flares were come from two different sources. The Plateau value was found to be 1.4336 ± 0.1104 s for Source 1, which is seen as possible the secondary component and 0.7550 ± 0.0677 s for Source 2, which is seen as possible third body. The half-life value was computed as 2278.1 s for Group 1 and 1811.2 s for Group 2. The flare frequency N1 was found to be 0.02726 h−1 and N2 was computed as 0.00002 for Group 1, while N1 was found to be 0.01977 h−1 and N2 was computed as 0.00001 for Group 2. In a results, KIC 2557430 is a possible triple system consisting of a γ Doradus-type star, a chromospherically active star, and also a flaring third body.



2010 ◽  
Vol 6 (S273) ◽  
pp. 89-95 ◽  
Author(s):  
A. F. Lanza

AbstractThe photospheric spot activity of some of the stars with transiting planets discovered by the CoRoT space experiment is reviewed. Their out-of-transit light modulations are fitted by a spot model previously tested with the total solar irradiance variations. This approach allows us to study the longitude distribution of the spotted area and its variations versus time during the five months of a typical CoRoT time series. The migration of the spots in longitude provides a lower limit for the surface differential rotation, while the variation of the total spotted area can be used to search for short-term cycles akin the solar Rieger cycles. The possible impact of a close-in giant planet on stellar activity is also discussed.



Sign in / Sign up

Export Citation Format

Share Document