ChemInform Abstract: The Triple System Water-Salt with Lithium Selenate, Sodium Selenate, Cobalt Selenate or Magnesium Selenate at 25 °C.

ChemInform ◽  
2010 ◽  
Vol 24 (31) ◽  
pp. no-no
Author(s):  
T. OJKOVA ◽  
D. MICHOV ◽  
R. JANKOVA

BIOPHYSICS ◽  
2010 ◽  
Vol 55 (2) ◽  
pp. 176-181 ◽  
Author(s):  
V. P. Korolev ◽  
D. V. Batov ◽  
A. V. Kustov




2004 ◽  
Vol 171 (4S) ◽  
pp. 163-163
Author(s):  
Niall M. Corcoran ◽  
Anthony J. Costello


2016 ◽  
Vol 5 (3) ◽  
pp. 38-43
Author(s):  
Windi Monica Surbakti ◽  
Gerson Rico M.H ◽  
Mersi Suriani Sinaga

Glycerol as a byproduct of biodiesel production was approximately formed 10% of the biodiesel weight. Impurities which contained in the glycerol such as catalyst, soap, methanol, water, salt, and matter organic non glycerol (MONG) have a significant effect on the glycerol concentration. So, it is necessary to treat the impurities. The purpose of this study is to know the effect of chloroform to glycerol purification process with acidification method using hydrochloric acid as pretreatment process. This research was begun with acid addition to the glycerol to neutralize the base content and to split the soap content into free fatty acid and salt, that are more easily separated from glycerol. Then the process was continued with extraction by the solvent chloroform using the variable of test volume ratio (v/v) (1:1, 1:1.5, 1:2)  and the extraction time (20, 40, and 60 minutes). The results showed that the more volume of solvent used, gave less extraction time to produce high purity of glycerol. The highest purity produced in this study amounted to 90,9082% is obtained at the ratio of the volume solvent (v/v) 1:1 with extraction time 60 minutes.



1998 ◽  
Vol 34 (6) ◽  
pp. 28-35
Author(s):  
V. I. Lavrik ◽  
A. N. Bilyk ◽  
N. A. Nikiforovich




2016 ◽  
Vol 10 (3) ◽  
pp. 259-270
Author(s):  
Ludmila Matienko ◽  
◽  
Larisa Mosolova ◽  
Vladimir Binyukov ◽  
Gennady Zaikov ◽  
...  

Mechanism of catalysis with binary and triple catalytic systems based on redox inactive metal (lithium) compound {LiSt+L2} and {LiSt+L2+PhOH} (L2=DMF or HMPA), in the selective ethylbenzene oxidation by dioxygen into -phenylethyl hydroperoxide is researched. The results are compared with catalysis by nickel-lithium triple system {NiII(acac)2+LiSt+PhOH} in selective ethylbenzene oxidation to PEH. The role of H-bonding in mechanism of catalysis is discussed. The possibility of the stable supramolecular nanostructures formation on the basis of triple systems, {LiSt+L2+PhOH}, due to intermolecular H-bonds, is researched with the AFM method.



Author(s):  
Truong Van Tuan ◽  
Irina Vladimirovna Volkova

Research was held in the estuary of the river Bach Dang (Dongbay community, Rakhtay district, Hai Phong, Vietnam) in June, 2012 - May, 2013. Concentration of lead was studied in water, suspended solids and bottom sediment. Clam beach (natural breeding environment of Meretrix lyrata ) was inspected regularly, every month. Water samples were taken 6 times from the bottom layer 10 cm down the bottom, once per 3 hours in each of 12 investigated zones. Bottom sediment samples were taken at the depth 2 cm. The findings show that lead accumulates mainly in suspended solids (23.3 mg/kg) and in bottom sediment (14.31 mg/kg), in water it is in small quantities (0.003 mg/kg). Analysis of bottom sediment samples taken in different places showed that they have even leadcontent, lead is distributed uniformly, localization of contaminations is not found. The results obtained can be assumed as the basis for investigating lead accumulation and its excretion by clam Meretrix lyrata organisms in the natural habitat.



Sign in / Sign up

Export Citation Format

Share Document