On the large-scale dynamics of rapidly rotating convection zones

1983 ◽  
Vol 269 ◽  
pp. 671 ◽  
Author(s):  
B. R. Durney
2009 ◽  
Vol 5 (H15) ◽  
pp. 347-347
Author(s):  
Gustavo Guerrero ◽  
Elisabete M. de Gouveia Dal Pino

AbstractWe present MHD numerical simulations of a rotating turbulent convection system in a 3D domain (we have used the finite volume, Goudunov type MHD code PLUTO (Mignone et al. 2007)). Rotating convection is the natural scenario for the study of the dynamo action which is able to generate a large scale magnetic field, like the observed in the sun. Though we have neglected in the present approach the Ω effect, due to a large scale shear, our model is appropriate to test the controversial existence of the so called α effect that arises from helical turbulence (e.g. Cattaneo & Hughes 2006, Käpylä et al. 2009). We start with a two-layer piece-wise polytropic region in hydrostatic equilibrium (e.g. Ziegler 2002), considering one stable overshoot layer at the bottom and a convectively unstable layer at the top of the computational domain. We have allowed this hydrodynamic system to evolve up to the steady state, i.e., after about 10 turnover times (τ). Then, we introduced a seed magnetic field and let the system evolve for more ~40 τ. Our preliminary results are summarized below in Figure 2.


2015 ◽  
Vol 91 (4) ◽  
Author(s):  
Céline Guervilly ◽  
David W. Hughes ◽  
Chris A. Jones

2008 ◽  
Vol 84 (2) ◽  
pp. 24001 ◽  
Author(s):  
R. P. J. Kunnen ◽  
H. J. H. Clercx ◽  
B. J. Geurts

2013 ◽  
Vol 717 ◽  
pp. 395-416 ◽  
Author(s):  
D. W. Hughes ◽  
M. R. E. Proctor

AbstractRecent numerical simulations of dynamo action resulting from rotating convection have revealed some serious problems in applying the standard picture of mean field electrodynamics at high values of the magnetic Reynolds number, and have thereby underlined the difficulties in large-scale magnetic field generation in this regime. Here we consider kinematic dynamo processes in a rotating convective layer of Boussinesq fluid with the additional influence of a large-scale horizontal velocity shear. Incorporating the shear flow enhances the dynamo growth rate and also leads to the generation of significant magnetic fields on large scales. By the technique of spectral filtering, we analyse the modes in the velocity that are principally responsible for dynamo action, and show that the magnetic field resulting from the full flow relies crucially on a range of scales in the velocity field. Filtering the flow to provide a true separation of scales between the shear and the convective flow also leads to dynamo action; however, the magnetic field in this case has a very different structure from that generated by the full velocity field. We also show that the nature of the dynamo action is broadly similar irrespective of whether the flow in the absence of shear can support dynamo action.


2007 ◽  
Vol 580 ◽  
pp. 303-318 ◽  
Author(s):  
F. MARQUES ◽  
I MERCADER ◽  
O. BATISTE ◽  
J. M. LOPEZ

Rotating convection is analysed numerically in a cylinder of aspect ratio one, for Prandtl number about 7. Traditionally, the problem has been studied within the Boussinesq approximation with density variation only incorporated in the gravitational buoyancy term and not in the centrifugal buoyancy term. In that limit, the governing equations admit a trivial conduction solution. However, the centrifugal buoyancy changes the problem in a fundamental manner, driving a large-scale circulation in which cool denser fluid is centrifuged radially outward and warm less-dense fluid is centrifuged radially inward, and so there is no trivial conduction state. For small Froude numbers, the transition to three-dimensional flow occurs for Rayleigh number R ≈ 7.5 × 103. For Froude numbers larger than 0.4, the centrifugal buoyancy stabilizes the axisymmetric large-scale circulation flow in the parameter range explored (up to R = 3.5 × 104). At intermediate Froude numbers, the transition to three-dimensional flow is via four different Hopf bifurcations, resulting in different coexisting branches of three-dimensional solutions. How the centrifugal and the gravitational buoyancies interact and compete, and the manner in which the flow becomes three-dimensional is different along each branch. The centrifugal buoyancy, even for relatively small Froude numbers, leads to quantitative and qualitative changes in the flow dynamics.


Sign in / Sign up

Export Citation Format

Share Document