The laboratory simulation of unmagnetized supernova remnants Absence of a blast wave

1984 ◽  
Vol 280 ◽  
pp. 802 ◽  
Author(s):  
J. E. Borovsky ◽  
M. B. Pongratz ◽  
R. A. Roussel-Dupre ◽  
T.-H. Tan
2000 ◽  
Vol 127 (2) ◽  
pp. 305-310 ◽  
Author(s):  
R. P. Drake ◽  
T. B. Smith ◽  
J. J. Carroll III ◽  
Y. Yan ◽  
S. G. Glendinning ◽  
...  

2021 ◽  
Vol 649 ◽  
pp. A14 ◽  
Author(s):  
S. Ustamujic ◽  
S. Orlando ◽  
E. Greco ◽  
M. Miceli ◽  
F. Bocchino ◽  
...  

Context. The morphology and the distribution of material observed in supernova remnants (SNRs) reflect the interaction of the supernova (SN) blast wave with the ambient environment, the physical processes associated with the SN explosion, and the internal structure of the progenitor star. IC 443 is a mixed-morphology (MM) SNR located in a quite complex environment: it interacts with a molecular cloud in the northwestern and southeastern areas and with an atomic cloud in the northeast. Aims. In this work, we aim to investigate the origin of the complex morphology and multi-thermal X-ray emission observed in SNR IC 443 through the study of the effect of the inhomogeneous ambient medium in shaping its observed structure and an exploration of the main parameters characterizing the remnant. Methods. We developed a 3D hydrodynamic (HD) model for IC 443, which describes the interaction of the SNR with the environment, parametrized in agreement with the results of the multi-wavelength data analysis. We performed an ample exploration of the parameter space describing the initial blast wave and the environment, including the mass of the ejecta, the energy and position of the explosion, as well as the density, structure, and geometry of the surrounding clouds. From the simulations, we synthesized the X-ray emission maps and spectra and compared them with actual X-ray data collected by XMM-Newton. Results. Our model explains the origin of the complex X-ray morphology of SNR IC 443 in a natural way, with the ability to reproduce, for the first time, most of the observed features, including the centrally-peaked X-ray morphology (characteristic of MM SNRs) when considering the origin of the explosion at the position where the pulsar wind nebula CXOU J061705.3+222127 was at the time of the explosion. In the model that best reproduces the observations, the mass of the ejecta and the energy of the explosion are ~7 M⊙ and ~1 × 1051 erg, respectively. From the exploration of the parameter space, we find that the density of the clouds is n > 300 cm−3 and that the age of SNR IC 443 is ~8000 yr. Conclusions. The observed inhomogeneous ambient medium is the main property responsible for the complex structure and the X-ray morphology of SNR IC 443, resulting in a very asymmetric distribution of the ejecta due to the off-centered location of the explosion inside the cavity formed by the clouds. It can be argued that the centrally peaked morphology (typical of MM SNRs) is a natural consequence of the interaction with the complex environment. A combination of high resolution X-ray observations and accurate 3D HD modeling is needed to confirm whether this scenario is applicable to other MM SNRs.


1979 ◽  
Vol 32 (5) ◽  
pp. 491 ◽  
Author(s):  
I Lerche

An investigation is made of the self-similar flow behind a one-dimensional blast wave from a planar explosion (situated on z = 0) in a medium whose density and magnetic field vary with distance as Z-W ahead of the blast front, with the assumption that the flow is isothermal. It is found that; if OJ OJ > 0 the governing equation possesses a set of movable critical points. For a weak, but nonzero, magnetic field it is shown that the value of the smallest critical point does not lie in the physical domain z > O. The post-shock fluid flow then cannot intersect the critical point, and is smoothly continuous. It is shown that to be physically acceptable, the fluid flow speed must pass through the origin. It is also shown that OJ must be less than t for the magnetic energy swept up by the blast wave to remain finite. The overall conclusion from the investigation is that the behaviour of isothermal blast waves in the presence of an ambient magnetic field differs substantially from the behaviour calculated for no magnetic field. These results point to the inadequacy of previous attempts to apply the theory of self-similar flows to evolving supernova remnants without making any allowance for the dynamical influence of magnetic field pressure.


Author(s):  
Vitaliy Korolev ◽  
Mikhail Eremin ◽  
Ilya Kovalenko ◽  
Andrey Zankovich

Astronomical observations show that the supernova remnants, even with a close to spherical shape, usually have multiscale ripple-like distortions. For example 15 bends on the shock front are clearly visible in the remnant 0509-67.5. The global instability of the flow is considered as one of the possible mechanisms for generating such structures. In the frame of linear analysis [26] was shown that this instability has a resonance character. It means that the perturbations with a certain wavelength number should grow faster, therefore ripples in the remnant shell will manifest itself predominantly in a certain range of scales. In this paper we present the results of numerical simulations of the nonlinear stage of this instability, caused by small perturbations in the external environment, depending on their scale and intensity. The unpertubed gas is supposed to has a power-law spartial dependence ρ0(r) ~ r-ω, where ω is a constant. The blast wave generated by a supernova expolosion is descibed by a Sedov type similarity solution. We have developed two-dimensional numerical model of adiabatic flow with a blast wave in a comoving frame of reference based on parallel code AstroChemHydro [1]. It was shown that, according to the predictions of linear analysis, perturbations in the external flow amplify behind the front of the shock wave, which leads to the development of convective instability and the development of turbulence. The results of numerical simulations demonstrated that in shell-type flows (for omega = 2,7 and gamma = 4/3) external disturbances along with the characteristic rearrangement of the shock front and turbulization of the flow behind it, cause the formation of radially elongated filaments with a vortex structure behind the shock, the number of which is determined by the harmonic number of the perturbation l.


1975 ◽  
Vol 201 ◽  
pp. 381 ◽  
Author(s):  
A. Solinger ◽  
J. Buff ◽  
S. Rappaport

1983 ◽  
Vol 101 ◽  
pp. 83-86
Author(s):  
Eric M. Jones ◽  
Barham W. Smith

After the supernova shock wave has swepted up about 8–10 stellar masses of interstellar material, the SNR structure is well described by blast wave theory (eg. Sedov 1959, Chevalier 1977). In fact, both numerical calculations of the early phases (Jones, Smith, and Straka 1981) and small scale, laboratory simulations (Wilke 1982) show transition to blast wave at 8–10 masses. While the late stages have been well understood for some time, the early stages have only been crudely modeled until very recently.


2005 ◽  
Vol 298 (1-2) ◽  
pp. 287-291 ◽  
Author(s):  
A. S. Moore ◽  
D. R. Symes ◽  
R. A. Smith

Sign in / Sign up

Export Citation Format

Share Document