scholarly journals Very High Resolution Calculations of Very Young Supernova Remnants

1983 ◽  
Vol 101 ◽  
pp. 83-86
Author(s):  
Eric M. Jones ◽  
Barham W. Smith

After the supernova shock wave has swepted up about 8–10 stellar masses of interstellar material, the SNR structure is well described by blast wave theory (eg. Sedov 1959, Chevalier 1977). In fact, both numerical calculations of the early phases (Jones, Smith, and Straka 1981) and small scale, laboratory simulations (Wilke 1982) show transition to blast wave at 8–10 masses. While the late stages have been well understood for some time, the early stages have only been crudely modeled until very recently.

Author(s):  
Deshawn M. Coombs ◽  
Nathan D. Peters ◽  
Ben Akih-Kumgeh

Forced ignition, the initiation of combustion processes by rapid and localized introduction of energy, is central to the successful operation of many combustion systems. It is therefore of interest to investigate this process, starting from the introduction of energy to the emergence of self-sustained flame or the quenching of an otherwise initialized flame kernel. Since the process is highly non-equilibrium and involves various complex kinetic phenomena, it is important to understand the key aspects that control failed or successful ignition. Detailed studies of the early phases of the ignition process can lead to knowledge of more general characteristics of the problem so that reduced models of the ignition process can be developed. These reduced versions can be used in less costly computational studies to assess various ignition events. This paper reports an experimental and numerical investigations of the early phase of laser ignition. The gas mixtures, air, methane/N2 and methane/air are considered to bring out the effect of heat release on the early flow field. The mixtures are studied at three different energy levels and the Jones blast wave theory is used to deduce the energy responsible for the development of the attendant shock waves. This energy is also used to specify initial conditions for the simulations of air and methane/air processes. Additionally, interferometry is used to resolve the density field within the plasma kernel. For the methane/air simulation two chemical models are used, a global reaction model supplemented by an ignition model and a two-step mechanism. The sensitivity of the simulations to the initial geometry of the laser spark is also investigated. The blast wave and interferometry results show that in the reacting methane/air mixture the resulting shock wave is strengthened by early heat release. It is also shown that the shock wave trajectory is not strongly affected by the initial spark geometry, but it has an impact on the velocity field and on the distribution of thermodynamic properties.


1976 ◽  
Vol 54 (6) ◽  
pp. 655-662 ◽  
Author(s):  
B. A. McIntosh ◽  
M. D. Watson ◽  
D. O. ReVelle

The shock wave produced by the hypersonic entry of a sufficiently large meteoroid into the earth's atmosphere should be detectable at ground level. An array of microbarographs operated at Springhill Meteor Observatory recorded pressure waves on December 14, 1974, believed to be associated with a large meteor detected by the Springhill radars. The time interval between the radar observation and the detection of pressure waves is consistent with an acoustic travel time from the location of the radar echo. Estimates of the meteor mass from the radar echo duration agree with mass estimates calculated from the blast–wave theory of ReVelle. Because no azimuth information was available for the meteor to compare with direction of arrival of the pressure waves, the association is not absolutely certain.


2019 ◽  
Vol 2 (1) ◽  
pp. 071-084
Author(s):  
Silwanus M. Talakua ◽  
Rafael M. Osok

The study was conducted in Wai Sari sub-watershed, Western Seram Regency Maluku to develop an accurate land degradation assessment model for tropical small islands. The Stocking’s field land degradation measurement and RUSLE methods were applied to estimate soil loss by erosion and the results of both methods were statistically tested in order to obtain a correction factor. Field indicators and prediction data were measured on 95 slope units derived from the topographic map. The rates of soil loss were calculated according to both methods, and the results were used to classify the degree of land degradation. The results show that the degree of land degradation based on the field assessment ranges from none-slight (4.04 - 17.565 t/ha/yr) to very high (235.44 - 404.00 t/ha/yr), while the RUSLE method ranges from none-slight (0.04-4.59 t/ha/yr) to very high 203.90 - 518.13 t/ha/yr.  However, the RUSLE method shows much higher in average soil loss (133.4 t/ha/yr) than the field assessment (33.9 t/ha/yr). The best regression equation of  logD/RP = - 0.594 + 1.0 logK + 1.0 logLS + 1.0 logC or D = 0.2547xRxKxLSx CxP was found to be a more suitable land degradation assessment  model for a small-scale catchment area in the tropical small islands.


2021 ◽  
Vol 13 (6) ◽  
pp. 1188
Author(s):  
Lara Talavera ◽  
Javier Benavente ◽  
Laura Del Río

Unusual shore-normal and barred-like rhythmic features were found in Camposoto Beach (Bay of Cádiz, SW Spain) during a monitoring program using unmanned aerial systems (UAS). They appeared in the backshore and persisted for 6 months (October 2017–March 2018). Their characteristics and possible formation mechanism were investigated analyzing: (1) UAS-derived high-resolution digital elevation models (DEMs), (2) hydrodynamic conditions, and (3) sediment samples. The results revealed that the features did not migrate spatially, that their wavelength was well predicted by the edge wave theory, and that they shared characteristics with both small-scale low-energy finger bars (e.g., geometry/appearance and amplitude) and swash cusps (e.g., wavelength, seaward circulation pattern, and finer and better sorted material in the runnels with respect to the crests). Our findings pinpoint to highly organized swash able to reach the backshore during spring tides under low-energy and accretionary conditions as well as backwash enhanced by conditions of water-saturated sediment. This study demonstrates that rhythmic features can appear under different modalities and beach locations than the ones observed up to date, and that their unusual nature may be attributed to the low spatiotemporal resolution of the traditional coastal surveying methods in comparison with novel technologies such as UAS.


The measurement of the high gas temperatures associated with arc discharges requires special techniques. One such method, developed by Suits (1935), depends on the measure­ment of the velocity of a sound wave passing through an arc column, although in fact Suits measured the velocity of a very weak shock wave. The new method described in the present paper is one in which temperatures are determined from the measurement of the velocity of a relatively strong shock wave propagated through an arc. The new method has the merit of consistently producing accurately measurable records and of increasing the accuracy of the temperature determination. The shock velocities are measured by means of a rotating mirror camera. Within the arc, the shock propagation is observable by virtue of the increased arc brightness produced by the shock. In the non-luminous regions surrounding the arc, the shock propagation is displayed by means of a Schlieren system. The interpretation of the measurements depends upon a one-dimensional analysis given in this paper which is similar to that of Chisnell (1955) and which describes the interaction of a plane shock with a con­tinuously varying temperature distribution. In our analysis account is taken also of the continuous variation in specific heats and molecular weight which are of importance under high gas temperature conditions. In practice plane wave theory cannot adequately describe the shock propagation, since attenuation occurs both in the free gas and in the arc column. The effects of this attenuation on the temperature determinations may be accounted for by the use of an experimentally determined attenuation relationship given in the paper. The finally developed method yields temperature values to an accuracy of ± 2%. Experiments are described for carbon and tungsten arcs in air and nitrogen for currents up to 55 amperes and pressures up to 3 atmospheres. The values obtained range from 6200 to 7700° K and are in good agreement with values determined by other techniques.


2013 ◽  
Vol 397-400 ◽  
pp. 270-273
Author(s):  
Ying Li ◽  
Xiao Bin Li ◽  
Yu Wang ◽  
Wei Zhang

Blast wave is numerical simulated based on FCT method. According to the comparative analysis, taking Henrych empirical formula as a standard, FCT method is more accuracy than Godunov method. Moreover, it has been found that the numerical accuracy is insufficient when the distance is small, it is necessary to develop and modify the numerical method continuously.


2017 ◽  
Vol 12 (S331) ◽  
pp. 201-205
Author(s):  
A. J. Nayana ◽  
Poonam Chandra

AbstractHESS J1731−347 a.k.a. SNR G353.6−0.7 is one of the five known very high energy (VHE, Energy > 0.1 TeV) shell-type supernova remnants. We carried out Giant Metrewave Radio Telescope (GMRT) observations of this TeV SNR in 1390, 610 and 325 MHz bands. We detected the 325 and 610 MHz radio counterparts of the SNR G353.6−0.7 (Nayana et al. 2017). We also determined the spectral indices of individual filaments and our values are consistent with the non-thermal radio emission. We compared the radio morphology with that of VHE emission. The peak in radio emission corresponds to the faintest feature in the VHE emission. We explain this anti-correlated emission in a possible leptonic origin of the VHE γ-rays.


Sign in / Sign up

Export Citation Format

Share Document