Jet collimation by turbulent viscosity. I

1987 ◽  
Vol 314 ◽  
pp. 33 ◽  
Author(s):  
R. N. Henriksen
2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


Author(s):  
G.I. Dusmetova ◽  
◽  
A.V. Sharifullin ◽  
V.N. Sharifullin ◽  
E.V. Kharitonov ◽  
...  
Keyword(s):  

Author(s):  
Jose Plasencia ◽  
Nathanael Inkson ◽  
Ole Jørgen Nydal

AbstractThis paper reports experimental research on the flow behavior of oil-water surfactant stabilized emulsions in different pipe diameters along with theoretical and computational fluid dynamics (CFD) modeling of the relative viscosity and inversion properties. The pipe flow of emulsions was studied in turbulent and laminar conditions in four pipe diameters (16, 32, 60, and 90 mm) at different mixture velocities and increasing water fractions. Salt water (3.5% NaCl w/v, pH = 7.3) and a mineral oil premixed with a lipophilic surfactant (Exxsol D80 + 0.25% v/v of Span 80) were used as the test fluids. The formation of water-in-oil emulsions was observed from low water fractions up to the inversion point. After inversion, unstable water-in-oil in water multiple emulsions were observed under different flow regimes. These regimes depend on the mixture velocity and the local water fraction of the water-in-oil emulsion. The eddy turbulent viscosity calculated using an elliptic-blending k-ε model and the relative viscosity in combination act to explain the enhanced pressure drop observed in the experiments. The inversion process occurred at a constant water fraction (90%) and was triggered by an increase of mixture velocity. No drag reduction effect was detected for the water-in-oil emulsions obtained before inversion.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


2018 ◽  
Vol 180 ◽  
pp. 02054
Author(s):  
Martin Lasota ◽  
Petr Šidlof

The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.


2020 ◽  
Vol 636 ◽  
pp. A93 ◽  
Author(s):  
P. J. Käpylä ◽  
M. Rheinhardt ◽  
A. Brandenburg ◽  
M. J. Käpylä

Context. Turbulent diffusion of large-scale flows and magnetic fields plays a major role in many astrophysical systems, such as stellar convection zones and accretion discs. Aims. Our goal is to compute turbulent viscosity and magnetic diffusivity which are relevant for diffusing large-scale flows and magnetic fields, respectively. We also aim to compute their ratio, which is the turbulent magnetic Prandtl number, Pmt, for isotropically forced homogeneous turbulence. Methods. We used simulations of forced turbulence in fully periodic cubes composed of isothermal gas with an imposed large-scale sinusoidal shear flow. Turbulent viscosity was computed either from the resulting Reynolds stress or from the decay rate of the large-scale flow. Turbulent magnetic diffusivity was computed using the test-field method for a microphysical magnetic Prandtl number of unity. The scale dependence of the coefficients was studied by varying the wavenumber of the imposed sinusoidal shear and test fields. Results. We find that turbulent viscosity and magnetic diffusivity are in general of the same order of magnitude. Furthermore, the turbulent viscosity depends on the fluid Reynolds number (Re) and scale separation ratio of turbulence. The scale dependence of the turbulent viscosity is found to be well approximated by a Lorentzian. These results are similar to those obtained earlier for the turbulent magnetic diffusivity. The results for the turbulent transport coefficients appear to converge at sufficiently high values of Re and the scale separation ratio. However, a weak trend is found even at the largest values of Re, suggesting that the turbulence is not in the fully developed regime. The turbulent magnetic Prandtl number converges to a value that is slightly below unity for large Re. For small Re we find values between 0.5 and 0.6 but the data are insufficient to draw conclusions regarding asymptotics. We demonstrate that our results are independent of the correlation time of the forcing function. Conclusions. The turbulent magnetic diffusivity is, in general, consistently higher than the turbulent viscosity, which is in qualitative agreement with analytic theories. However, the actual value of Pmt found from the simulations (≈0.9−0.95) at large Re and large scale separation ratio is higher than any of the analytic predictions (0.4−0.8).


2019 ◽  
Vol 486 (6) ◽  
pp. 673-674
Author(s):  
G. F. Krymsky

A new approach to calculation of the dissipation of mechanical energy in the environment with turbulent viscosity based on determination of the shear modulus of velocity is proposed. As an example the dynamics of Hill vortex moved in such environment is considered. The vortex radius extends linearly with the distance covered and makes up about 13% from it.


Sign in / Sign up

Export Citation Format

Share Document