The effects of radiation pressure on stellar stability

1988 ◽  
Vol 327 ◽  
pp. 801 ◽  
Author(s):  
R. F. Stellingwerf ◽  
A. Gautschy
Author(s):  
Ivan Favero

Light exerts mechanical action on matter through various mechanisms, the most famous being radiation pressure, with the associated picture of a photon bouncing on a perfectly reflective movable mirror and transferring twice its momentum. But still today, unambiguously observing the effects of radiation pressure remains a challenge. In the quantum domain, the radiation pressure interaction between a moving mirror and light stored in a cavity accepts a simple Hamiltonian formulation. But this Hamiltonian description is sometimes oversimplified and underestimates or misses other mechanical effects of light accompanying radiation pressure in experiments. In this chapter, we will not only address radiation pressure but also other relevant optical forces such as the optical gradient force, electrostriction, or the photothermal and optoelectronic forces, which are key in micro- and nanoscale devices and must all be controlled on an equal footing to fully harness the technological and scientific potential of miniature optomechanical systems.


1967 ◽  
Vol 20 (6) ◽  
pp. 651
Author(s):  
MPC Legg

The angular velocity distribution in rotating massive stars with uniform composition and opacity due to electron scattering is calculated on the assumption that meridional circulation is neglible. The effects of radiation pressure are taken into account in the determination of the differential rotation and the angularvelocity is assumed to be ndependent of latitude.


1968 ◽  
Vol 34 ◽  
pp. 236-248
Author(s):  
F.D. Kahn

The expansion of a typical planetary nebula is studied by means of a simple model, with spherical symmetry. It is shown that there is a build-up of radiation pressure, due to Lyman-α photons trapped in the nebula, and that this causes the initial acceleration outwards. After some 1·5 × 1011 sec the nebula will have a radius of the order of 1017 cm, and an expansion velocity of about 2 × 106 cm/sec. At roughly this time the dynamical effects of radiation pressure begin to be superseded by those of the recoil pressure at the ionization front, which continues to dominate until the nebula is fully ionized.Finally some reasons are considered why most nebulae do not have spherically symmetrical shapes, but why so often they appear to be ring-like or butterfly-shaped.


10.4081/708 ◽  
2011 ◽  
Vol 1 (1) ◽  
pp. e2
Author(s):  
Khalil I. Khalil ◽  
Mohamed N.S. Ismail

This paper is devoted to study the effects of radiation pressure together with tesseral and zonal harmonics on the high altitude artificial satellites orbits. The equations of motion were regularized by using the KS variables and the problem was solved numerically using the fourth order of Runge Kutta method. A numerical testing was performed on Lageos-1 satellite in order to analyze its orbital changes due to effects of both radiation pressure and Earth's oblateness.


2011 ◽  
Vol 1 (1) ◽  
pp. 2
Author(s):  
Khalil I. Khalil ◽  
Mohamed N.S. Ismail

This paper is devoted to study the effects of radiation pressure together with tesseral and zonal harmonics on the high altitude artificial satellites orbits. The equations of motion were regularized by using the KS variables and the problem was solved numerically using the fourth order of Runge Kutta method. A numerical testing was performed on Lageos-1 satellite in order to analyze its orbital changes due to effects of both radiation pressure and Earth's oblateness.


2020 ◽  
Vol 493 (1) ◽  
pp. 1292-1305 ◽  
Author(s):  
Alex Debrecht ◽  
Jonathan Carroll-Nellenback ◽  
Adam Frank ◽  
Eric G Blackman ◽  
Luca Fossati ◽  
...  

ABSTRACT The role of radiation pressure in shaping exoplanet photoevaporation remains a topic of contention. Radiation pressure from the exoplanet’s host star has been proposed as a mechanism to drive the escaping atmosphere into a ‘cometary’ tail and explain the high velocities observed in systems where mass-loss is occurring. In this paper, we present results from high-resolution 3D hydrodynamic simulations of a planet similar to HD 209458b. We self-consistently launch a wind flowing outwards from the planet by calculating the ionization and heating resulting from incident high-energy radiation, and account for radiation pressure. We first present a simplified calculation, setting a limit on the Lyman-α flux required to drive the photoevaporated planetary material to larger radii and line-of-sight velocities. We then present the results of our simulations, which confirm the limits determined by our analytic calculation. We thus demonstrate that, within the limits of our hydrodynamic simulation and for the Lyman-α fluxes expected for HD 209458, radiation pressure is unlikely to significantly affect photoevaporative winds or to explain the high velocities at which wind material is observed, though further possibilities remain to be investigated.


Sign in / Sign up

Export Citation Format

Share Document