ionization front
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 3)

Author(s):  
William J Henney

Abstract Broad Raman-scattered wings of hydrogen lines can be used to map neutral gas illuminated by high-mass stars in star forming regions. Raman scattering transforms far-ultraviolet starlight from the wings of the Lyβ line (1022Å to 1029Å) to red visual light in the wings of the Hα line (6400AA to 6700Å). Analysis of spatially resolved spectra of the Orion Bar and other regions in the Orion Nebula shows that this process occurs in the neutral photo-dissociation region between the ionization front and dissociation front. The inner Raman wings are optically thick and allow the neutral hydrogen density to be determined, implying n(H0) ≈ 105 cm−3 for the Orion Bar. Far-ultraviolet resonance lines of neutral oxygen imprint their absorption onto the stellar continuum as it passes through the ionization front, producing characteristic absorption lines at 6633Å and 6664Å with widths of order 2Å. This is a unique signature of Raman scattering, which allows it to be easily distinguished from other processes that might produce broad Hα wings, such as electron scattering or high-velocity outflows.


2021 ◽  
Vol 502 (2) ◽  
pp. 1569-1578
Author(s):  
Richard A Booth ◽  
Cathie J Clarke

ABSTRACT A necessary first step for dust removal in protoplanetary disc winds is the delivery of dust from the disc to the wind. In the case of ionized winds, the disc and wind are sharply delineated by a narrow ionization front where the gas density and temperature vary by more than an order of magnitude. Using a novel method that is able to model the transport of dust across the ionization front in the presence of disc turbulence, we revisit the problem of dust delivery. Our results show that the delivery of dust to the wind is determined by the vertical gas flow through the disc induced by the mass-loss, rather than turbulent diffusion (unless the turbulence is strong, i.e. α ≳ 0.01). Using these results, we provide a simple relation between the maximum size of particle that can be delivered to the wind and the local mass-loss rate per unit area from the wind. This relation is independent of the physical origin of the wind and predicts typical sizes in the 0.01–$1\, \rm{\mu m}$ range for extreme-ultraviolet- or X-ray-driven winds. These values are a factor of ∼10 smaller than those obtained when considering only whether the wind is able to carry away the grains.


2020 ◽  
Vol 644 ◽  
pp. A25
Author(s):  
M. Tiwari ◽  
K. M. Menten ◽  
F. Wyrowski ◽  
A. Giannetti ◽  
M.-Y. Lee ◽  
...  

Context. Messier 8 (M8), one of the brightest H II regions in our Galaxy, is powered by massive O-type stars and is associated with recent and ongoing massive star formation. Two prominent massive star-forming regions associated with M8 are M8-Main, the particularly bright part of the large-scale H II region (mainly) ionized by the stellar system Herschel 36 (Her 36) and M8 East (M8 E), which is mainly powered by a deeply embedded young stellar object (YSO), the bright infrared (IR) source M8E-IR. Aims. We study the interaction of the massive star-forming region M8 E with its surroundings using observations of assorted diffuse and dense gas tracers that allow quantifying the kinetic temperatures and volume densities in this region. With a multiwavelength view of M8 E, we investigate the cause of star formation. Moreover, we compare the star-forming environments of M8-Main and M8 E, based on their physical conditions and the abundances of the various observed species toward them. Methods. We used the Institut de Radioastronomía Millimétrica 30 m telescope to perform an imaging spectroscopy survey of the ~1 pc scale molecular environment of M8E-IR and also performed deep integrations toward the source itself. We imaged and analyzed data for the J = 1 → 0 rotational transitions of 12CO, 13CO, N2H+, HCN, H13CN, HCO+, H13CO+, HNC, and HN13C observed for the first time toward M8 E. To visualize the distribution of the dense and diffuse gas in M8 E, we compared our velocity-integrated intensity maps of 12CO, 13CO, and N2H+ with ancillary data taken at IR and submillimeter wavelengths. We used techniques that assume local thermodynamic equilibrium (LTE) and non-LTE to determine column densities of the observed species and constrain the physical conditions of the gas that causes their emission. Examining the class 0/ I and class II YSO populations in M8 E, allows us to explore the observed ionization front (IF) as seen in the high resolution Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) 8 μm emission image. The difference between the ages of the YSOs and their distribution in M8 E were used to estimate the speed of the IF. Results. We find that 12CO probes the warm diffuse gas also traced by the GLIMPSE 8 μm emission, while N2H+ traces the cool and dense gas following the emission distribution of the APEX Telescope Large Area Survey of the Galaxy 870 μm dust continuum. We find that the star-formation in M8 E appears to be triggered by the earlier formed stellar cluster NGC 6530, which powers an H II region giving rise to an IF that is moving at a speed ≥0.26 km s−1 across M8 E. Based on our qualitative and quantitative analysis, the J = 1 → 0 transition lines of N2H+ and HN13C appear to be more direct tracers of dense molecular gas than the J = 1 → 0 transition lines of HCN and HCO+. We derive temperatures of 80 and 30 K for the warm and cool gas components, respectively, and constrain the H2 volume densities to be in the range of 104–106 cm−3. Comparison of the observed abundances of various species reflects the fact that M8 E is at an earlier stage of massive star formation than M8-Main.


2020 ◽  
Vol 501 (1) ◽  
pp. 1127-1142
Author(s):  
Mark A Hutchison ◽  
Cathie J Clarke

ABSTRACT We model the gas and dust dynamics in a turbulent protoplanetary disc undergoing extreme-UV photoevaporation in order to better characterize the dust properties in thermal winds (e.g. size distribution, flux rate, trajectories). Our semi-analytic approach allows us to rapidly calculate these dust properties without resorting to expensive hydrodynamic simulations. We find that photoevaporation creates a vertical gas flow within the disc that assists turbulence in supplying dust to the ionization front. We examine both the delivery of dust to the ionization front and its subsequent entrainment in the overlying wind. We derive a simple analytic criterion for the maximum grain size that can be entrained and show that this is in good agreement with the results of previous simulations where photoevaporation is driven by a range of radiation types. We show that, in contrast to the case for magnetically driven winds, we do not expect large-scale dust transport within the disc to be effected by photoevaporation. We also show that the maximum size of grains that can be entrained in the wind (smax) is around an order of magnitude larger than the maximum size of grains that can be delivered to the front by advection alone ($s_{\mathrm{crit}}\lesssim 1 \,\, \mu {\mathrm{m}}$ for Herbig Ae/Be stars and $\lesssim 0.01 \,\, \mu {\mathrm{m}}$ for T Tauri stars). We further investigate how larger grains, up to a limiting size slimit, can be delivered to the front by turbulent diffusion alone. In all cases, we find smax ≳ slimit so that we expect that any dust that is delivered to the front can be entrained in the wind and that most entrained dust follows trajectories close to that of the gas.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gregory K. Ngirmang ◽  
John T. Morrison ◽  
Kevin M. George ◽  
Joseph R. Smith ◽  
Kyle D. Frische ◽  
...  

Abstract Super-intense laser plasma interaction has shown great promise as a platform for next generation particle accelerators and sources for electron, x-rays, ions and neutrons. In particular, when a relativistic intense laser focus interacts with a thin solid density target, ionized electrons are accelerated to near the speed of light (c) within an optical cycle and are pushed in the forward and transverse directions away from focus, carrying a significant portion of the laser energy. These relativistic electrons are effectively collisionless, and their interactions with the ions and surrounding cold electrons are predominantly mediated by collective electromagnetic effects of the resulting currents and charge separation. Thus, a deeper understanding of subsequent high energy ions generated from various mechanisms and their optimization requires knowledge of the relativistic electron dynamics and the fields they produce. In addition to producing MV/m quasi-static fields, accelerating the ions and confining the majority of the electrons near the bulk of the laser target, these relativistic electron currents are subject to plasma instabilities like the Weibel instability as they propagate through the thermal population in the bulk target. In this work, we present high temporal (100 fs) and spatial (1 μm) resolution shadowgraphy video capturing relativistic radial ionization front expansion and the appearance of filamentation radiating from the laser spot within a sub-micron thick liquid sheet target. Filamentation within the region persists for several picoseconds and seeds the eventual recombination and heating dynamics on the nanosecond timescale. A large scale three-dimensional particle-in-cell (PIC) simulation of the interaction revealed the presence of strong magnetic fields characteristic of Weibel Instability, and corroborated the relativistic radial expansion of the ionization front, whose speed was determined to be 0.77c. Both the experimental and simulation results strongly point towards the target field ionization and the outward expanding hot electron current as the cause of the radial expansion.


2020 ◽  
Vol 494 (2) ◽  
pp. 1838-1847
Author(s):  
Curtis Struck

ABSTRACT Bow-shaped mid-infrared (mid-IR) emission regions have been discovered in satellite observations of numerous late-type O and early-type B stars with moderate velocities relative to the ambient interstellar medium. Previously, hydrodynamical bow shock models have been used to study this emission. It appears that such models are incomplete in that they neglect kinetic effects associated with long mean free paths of stellar wind particles, and the complexity of Weibel instability fronts. Wind ions are scattered in the Weibel instability and mix with the interstellar gas. However, they do not lose their momentum and most ultimately diffuse further into the ambient gas like cosmic rays, and share their energy and momentum. Lacking other coolants, the heated gas transfers energy into interstellar dust grains, which radiate it. This process, in addition to grain photoheating, provides the energy for the emission. A weak R-type ionization front, formed well outside the IR emission region, generally moderates the interstellar gas flow into the emission region. The theory suggests that the IR emission process is limited to cases of moderate stellar peculiar velocities, evidently in accord with the observations.


2020 ◽  
Vol 493 (4) ◽  
pp. 4643-4656 ◽  
Author(s):  
Shyam H Menon ◽  
Christoph Federrath ◽  
Rolf Kuiper

Abstract We investigate the turbulence driving mode of ionizing radiation from massive stars on the surrounding interstellar medium. We run hydrodynamical simulations of a turbulent cloud impinged by a plane-parallel ionization front. We find that the ionizing radiation forms pillars of neutral gas reminiscent of those seen in observations. We quantify the driving mode of the turbulence in the neutral gas by calculating the driving parameter b, which is characterized by the relation $\sigma _s^2 = \ln ({1+b^2\mathcal {M}^2})$ between the variance of the logarithmic density contrast $\sigma _s^2$ [where s = ln (ρ/ρ0) with the gas density ρ and its average ρ0], and the turbulent Mach number $\mathcal {M}$. Previous works have shown that b ∼ 1/3 indicates solenoidal (divergence-free) driving and b ∼ 1 indicates compressive (curl-free) driving, with b ∼ 1 producing up to ten times higher star formation rates than b ∼ 1/3. The time variation of b in our study allows us to infer that ionizing radiation is inherently a compressive turbulence driving source, with a time-averaged b ∼ 0.76 ± 0.08. We also investigate the value of b of the pillars, where star formation is expected to occur, and find that the pillars are characterized by a natural mixture of both solenoidal and compressive turbulent modes (b ∼ 0.4) when they form, and later evolve into a more compressive turbulent state with b ∼ 0.5–0.6. A virial parameter analysis of the pillar regions supports this conclusion. This indicates that ionizing radiation from massive stars may be able to trigger star formation by producing predominately compressive turbulent gas in the pillars.


2020 ◽  
Vol 127 (6) ◽  
pp. 063301 ◽  
Author(s):  
Kuniyoshi Tabata ◽  
Yuki Harada ◽  
Yusuke Nakamura ◽  
Kimiya Komurasaki ◽  
Hiroyuki Koizumi ◽  
...  

Author(s):  
Thomas S-Y Lai ◽  
Adolf N Witt ◽  
Carlos Alvarez ◽  
Jan Cami

Abstract We report the first spectroscopic observations of a background star seen through the region between the ionization front and the dissociation front of the nebula IC 63. This photodissociation region (PDR) exhibits intense extended red emission (ERE) attributed to fluorescence by large molecules/ions. We detected strong diffuse interstellar bands (DIB) in the stellar spectrum, including an exceptionally strong and broad DIB at λ4428. The detection of strong DIBs in association with ERE could be consistent with the suggestion that the carriers of DIBs and ERE are identical. The likely ERE process is recurrent fluorescence, enabled by inverse internal conversions from highly excited vibrational levels of the ground state to low-lying electronic states with subsequent transitions to ground. This provides a path to rapid radiative cooling for molecules/molecular ions, greatly enhancing their ability to survive in a strongly irradiated environment. The ratio of the equivalent widths (EW) of DIBs λ5797 and λ5780 in IC 63 is the same as that observed in the low-density interstellar medium with UV interstellar radiation fields (ISRF) weaker by at least two orders of magnitude. This falsifies suggestions that the ratio of these two DIBs can serve as a measure of the UV strength of the ISRF. Observations of the nebular spectrum of the PDR of IC 63 at locations immediately adjacent to where DIBs were detected failed to reveal any presence of sharp emission features seen in the spectrum of the Red Rectangle nebula. This casts doubts upon proposals that the carriers of these features are the same as those of DIBs seen at slightly shorter wavelengths.


2020 ◽  
Vol 493 (1) ◽  
pp. 29-47
Author(s):  
Susmita Das ◽  
Shashi M Kanbur ◽  
Earl P Bellinger ◽  
Anupam Bhardwaj ◽  
Harinder P Singh ◽  
...  

ABSTRACT Period–colour and amplitude–colour (PCAC) relations can be used to probe both the hydrodynamics of outer envelope structure and evolutionary status of Cepheids and RR Lyraes. In this work, we incorporate the PCAC relations for RR Lyraes, BL Her, W Vir, and classical Cepheids in a single unifying theory that involves the interaction of the hydrogen ionization front (HIF) and stellar photosphere and the theory of stellar evolution. PC relations for RR Lyraes and classical Cepheids using the Optical Gravitational Lensing Experiment (OGLE-IV) data are found to be consistent with this theory: RR Lyraes have shallow/sloped relations at minimum/maximum light, whilst long-period (P > 10 d) Cepheids exhibit sloped/flat PC relations at minimum/maximum light. The differences in the PC relations for Cepheids and RR Lyraes can be explained based on the relative location of the HIF and stellar photosphere which changes depending on their position on the Hertzsprung–Russell diagram. We also extend our analysis of PCAC relations for type II Cepheids in the Galactic bulge, Large and Small Magellanic Clouds using OGLE-IV data. We find that BL Her stars have sloped PC relations at maximum and minimum light similar to short-period (P < 10 d) classical Cepheids. W Vir stars exhibit sloped/flat PC relation at minimum/maximum light similar to long-period classical Cepheids. We also compute state-of-the-art 1D radiation hydrodynamic models of RR Lyraes, BL Her and classical Cepheids using the radial stellar pulsation code in mesa to further test these ideas theoretically and find that the models are generally consistent with this picture. We are thus able to explain PC relations at maximum and minimum light across a broad spectrum of variable star types.


Sign in / Sign up

Export Citation Format

Share Document