scholarly journals Linear Gravitational Instability of Filamentary and Sheetlike Molecular Clouds with Magnetic Fields

1996 ◽  
Vol 472 (2) ◽  
pp. 673-702 ◽  
Author(s):  
Curtis S. Gehman ◽  
Fred C. Adams ◽  
Richard Watkins
2011 ◽  
Vol 26 (04) ◽  
pp. 235-249 ◽  
Author(s):  
MARTIN HOUDE ◽  
TALAYEH HEZAREH ◽  
HUA-BAI LI ◽  
THOMAS G. PHILLIPS

We review the introduction and development of a novel method for the characterization of magnetic fields in star-forming regions. The technique is based on the comparison of spectral line profiles from coexistent neutral and ion molecular species commonly detected in molecular clouds, sites of star formation. Unlike other methods used to study magnetic fields in the cold interstellar medium, this ion/neutral technique is not based on spin interactions with the field. Instead, it relies on and takes advantage of the strong cyclotron coupling between the ions and magnetic fields, thus exposing what is probably the clearest observational manifestation of magnetic fields in the cold, weakly ionized gas that characterizes the interior of molecular clouds. We will show how recent development and modeling of the ensuing ion line narrowing effect leads to a determination of the ambipolar diffusion scale involving the turbulent component of magnetic fields in star-forming regions, as well as the strength of the ordered component of the magnetic field.


1997 ◽  
Vol 170 ◽  
pp. 25-32
Author(s):  
Christopher F. Mckee

CO observations indicate that molecular clouds have a complex multiphase structure, and this is compared with the multiphase structure of the diffuse interstellar medium. The trace ionization within the molecular gas is governed primarily by UV photoionization. Magnetic fields contribute a significantly larger fraction of the pressure in molecular clouds than in the diffuse interstellar medium. Observations suggest that the total Alfvén Mach number, mAtot, of the turbulence in the diffuse ISM exceeds unity; Zeeman observations are consistent with mAtot ≲ 1 in molecular clouds, but more data are needed to verify this. Most molecular clouds are self-gravitating, and they can be modeled as multi-pressure polytropes with thermal, magnetic, and wave pressure. The pressure and density within self-gravitating clouds is regulated by the pressure in the surrounding diffuse ISM.


2019 ◽  
Vol 632 ◽  
pp. A68 ◽  
Author(s):  
M. Tahani ◽  
R. Plume ◽  
J. C. Brown ◽  
J. D. Soler ◽  
J. Kainulainen

Context. A new method based on Faraday rotation measurements recently found the line-of-sight component of magnetic fields in Orion-A and showed that their direction changes from the eastern side of this filamentary structure to its western side. Three possible magnetic field morphologies that can explain this reversal across the Orion-A region are toroidal, helical, and bow-shaped morphologies. Aims. In this paper, we constructed simple models to represent these three morphologies and compared them with the available observational data to find the most probable morphology(ies). Methods. We compared the observations with the models and used probability values and a Monte Carlo analysis to determine the most likely magnetic field morphology among these three morphologies. Results. We found that the bow morphology had the highest probability values, and that our Monte-Carlo analysis suggested that the bow morphology was more likely. Conclusions. We suggest that the bow morphology is the most likely and the most natural of the three morphologies that could explain a magnetic field reversal across the Orion-A filamentary structure (i.e., bow, helical and toroidal morphologies).


1991 ◽  
Vol 147 ◽  
pp. 83-92
Author(s):  
R. N. Henriksen

in this paper I first review some of the simple structural concepts associated with compressible turbulence. In particular the hierarchical or self-similar fractal structure to be expected is formulated in a manner readily compared to the observations, and to previous work. In the next section I present the first results of a wavelet analysis on molecular clouds, which seem to comfirm the hierarchical scaling. I conclude with an extention of the theory to include magnetic fields. This latter theory represents an alternative to the more conventional dynamo theory.


2007 ◽  
Vol 23 ◽  
pp. 37-54 ◽  
Author(s):  
R.M. Crutcher

2013 ◽  
Vol 14 (1) ◽  
pp. 66-76 ◽  
Author(s):  
Alireza Khesali ◽  
Khodadad Kokabi ◽  
Kazem Faghei ◽  
Mohsen Nejad-Asghar

1993 ◽  
Vol 412 ◽  
pp. L75 ◽  
Author(s):  
Tomoyuki Hanawa ◽  
Fumitaka Nakamura ◽  
Tomoaki Matsumoto ◽  
Takenori Nakano ◽  
Ken'ichi Tatematsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document