scholarly journals Could bow-shaped magnetic morphologies surround filamentary molecular clouds?

2019 ◽  
Vol 632 ◽  
pp. A68 ◽  
Author(s):  
M. Tahani ◽  
R. Plume ◽  
J. C. Brown ◽  
J. D. Soler ◽  
J. Kainulainen

Context. A new method based on Faraday rotation measurements recently found the line-of-sight component of magnetic fields in Orion-A and showed that their direction changes from the eastern side of this filamentary structure to its western side. Three possible magnetic field morphologies that can explain this reversal across the Orion-A region are toroidal, helical, and bow-shaped morphologies. Aims. In this paper, we constructed simple models to represent these three morphologies and compared them with the available observational data to find the most probable morphology(ies). Methods. We compared the observations with the models and used probability values and a Monte Carlo analysis to determine the most likely magnetic field morphology among these three morphologies. Results. We found that the bow morphology had the highest probability values, and that our Monte-Carlo analysis suggested that the bow morphology was more likely. Conclusions. We suggest that the bow morphology is the most likely and the most natural of the three morphologies that could explain a magnetic field reversal across the Orion-A filamentary structure (i.e., bow, helical and toroidal morphologies).

2018 ◽  
Vol 614 ◽  
pp. A100 ◽  
Author(s):  
M. Tahani ◽  
R. Plume ◽  
J. C. Brown ◽  
J. Kainulainen

Context. Magnetic fields pervade in the interstellar medium (ISM) and are believed to be important in the process of star formation, yet probing magnetic fields in star formation regions is challenging. Aims. We propose a new method to use Faraday rotation measurements in small-scale star forming regions to find the direction and magnitude of the component of magnetic field along the line of sight. We test the proposed method in four relatively nearby regions of Orion A, Orion B, Perseus, and California. Methods. We use rotation measure data from the literature. We adopt a simple approach based on relative measurements to estimate the rotation measure due to the molecular clouds over the Galactic contribution. We then use a chemical evolution code along with extinction maps of each cloud to find the electron column density of the molecular cloud at the position of each rotation measure data point. Combining the rotation measures produced by the molecular clouds and the electron column density, we calculate the line-of-sight magnetic field strength and direction. Results. In California and Orion A, we find clear evidence that the magnetic fields at one side of these filamentary structures are pointing towards us and are pointing away from us at the other side. Even though the magnetic fields in Perseus might seem to suggest the same behavior, not enough data points are available to draw such conclusions. In Orion B, as well, there are not enough data points available to detect such behavior. This magnetic field reversal is consistent with a helical magnetic field morphology. In the vicinity of available Zeeman measurements in OMC-1, OMC-B, and the dark cloud Barnard 1, we find magnetic field values of − 23 ± 38 μG, − 129 ± 28 μG, and 32 ± 101 μG, respectively, which are in agreement with the Zeeman measurements.


2020 ◽  
Vol 500 (1) ◽  
pp. 153-176
Author(s):  
Stefan Reissl ◽  
Amelia M Stutz ◽  
Ralf S Klessen ◽  
Daniel Seifried ◽  
Stefanie Walch

ABSTRACT The degree to which the formation and evolution of clouds and filaments in the interstellar medium is regulated by magnetic fields remains an open question. Yet the fundamental properties of the fields (strength and 3D morphology) are not readily observable. We investigate the potential for recovering magnetic field information from dust polarization, the Zeeman effect, and the Faraday rotation measure (RM) in a SILCC-Zoom magnetohydrodynamic (MHD) filament simulation. The object is analysed at the onset of star formation and it is characterized by a line-mass of about $\mathrm{\left(M/L\right) \sim 63\ \mathrm{M}_{\odot }\ pc^{-1}}$ out to a radius of $1\,$ pc and a kinked 3D magnetic field morphology. We generate synthetic observations via polaris radiative transfer (RT) post-processing and compare with an analytical model of helical or kinked field morphology to help interpreting the inferred observational signatures. We show that the tracer signals originate close to the filament spine. We find regions along the filament where the angular dependence with the line of sight (LOS) is the dominant factor and dust polarization may trace the underlying kinked magnetic field morphology. We also find that reversals in the recovered magnetic field direction are not unambiguously associated to any particular morphology. Other physical parameters, such as density or temperature, are relevant and sometimes dominant compared to the magnetic field structure in modulating the observed signal. We demonstrate that the Zeeman effect and the RM recover the line-of-sight magnetic field strength to within a factor 2.1–3.4. We conclude that the magnetic field morphology may not be unambiguously determined in low-mass systems by observations of dust polarization, Zeeman effect, or RM, whereas the field strengths can be reliably recovered.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2018 ◽  
Vol 6 ◽  
Author(s):  
A. Rigby ◽  
J. Katz ◽  
A. F. A. Bott ◽  
T. G. White ◽  
P. Tzeferacos ◽  
...  

Magnetic field measurements in turbulent plasmas are often difficult to perform. Here we show that for ${\geqslant}$kG magnetic fields, a time-resolved Faraday rotation measurement can be made at the OMEGA laser facility. This diagnostic has been implemented using the Thomson scattering probe beam and the resultant path-integrated magnetic field has been compared with that of proton radiography. Accurate measurement of magnetic fields is essential for satisfying the scientific goals of many current laser–plasma experiments.


Author(s):  
R. R. Andreasyan

We bring results of some our investigations of magnetic field of our Galaxy and extragalactic radio sources. For the study were used data of Faraday rotation of pulsars and extragalactic radio sources as well as data of physical and morphological properties of more than 500 radio galaxies of different morphological classes.


1971 ◽  
Vol 43 ◽  
pp. 76-83 ◽  
Author(s):  
R. C. Smithson ◽  
R. B. Leighton

For many years solar magnetic fields have been measured by a variety of techniques, all of which exploit the Zeeman splitting of lines in the solar spectrum. One of these techniques (Leighton, 1959) involves a photographic subtraction of two monochromatic images to produce a picture of the Sun in which the line-of-sight component of the solar magnetic field appears as various shades of gray. In a magnetogram made by this method, zero field strength appears as neutral gray, while magnetic fields of one polarity or the other appear as lighter or darker areas, respectively. Figure 1 shows such a magnetogram.


Author(s):  
Nirmit Sakre ◽  
Asao Habe ◽  
Alex R Pettitt ◽  
Takashi Okamoto

Abstract We study the effect of magnetic field on massive dense core formation in colliding unequal molecular clouds by performing magnetohydrodynamic simulations with sub-parsec resolution (0.015 pc) that can resolve the molecular cores. Initial clouds with the typical gas density of the molecular clouds are immersed in various uniform magnetic fields. The turbulent magnetic fields in the clouds consistent with the observation by Crutcher et al. (2010, ApJ, 725, 466) are generated by the internal turbulent gas motion before the collision, if the uniform magnetic field strength is 4.0 μG. The collision speed of 10 km s−1 is adopted, which is much larger than the sound speeds and the Alfvén speeds of the clouds. We identify gas clumps with gas densities greater than 5 × 10−20 g cm−3 as the dense cores and trace them throughout the simulations to investigate their mass evolution and gravitational boundness. We show that a greater number of massive, gravitationally bound cores are formed in the strong magnetic field (4.0 μG) models than the weak magnetic field (0.1 μG) models. This is partly because the strong magnetic field suppresses the spatial shifts of the shocked layer that should be caused by the nonlinear thin shell instability. The spatial shifts promote the formation of low-mass dense cores in the weak magnetic field models. The strong magnetic fields also support low-mass dense cores against gravitational collapse. We show that the numbers of massive, gravitationally bound cores formed in the strong magnetic field models are much larger than in the isolated, non-colliding cloud models, which are simulated for comparison. We discuss the implications of our numerical results on massive star formation.


2019 ◽  
Vol 629 ◽  
pp. A96 ◽  
Author(s):  
Juan D. Soler

We present a study of the relative orientation between the magnetic field projected onto the plane of sky (B⊥) on scales down to 0.4 pc, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the distribution of gas column density (NH) structures on scales down to 0.026 pc, derived from the observations by Herschel in submillimeter wavelengths, toward ten nearby (d < 450 pc) molecular clouds. Using the histogram of relative orientation technique in combination with tools from circular statistics, we found that the mean relative orientation between NH and B⊥ toward these regions increases progressively from 0°, where the NH structures lie mostly parallel to B⊥, with increasing NH, in many cases reaching 90°, where the NH structures lie mostly perpendicular to B⊥. We also compared the relative orientation between NH and B⊥ and the distribution of NH, which is characterized by the slope of the tail of the NH probability density functions (PDFs). We found that the slopes of the NH PDF tail are steepest in regions where NH and B⊥ are close to perpendicular. This coupling between the NH distribution and the magnetic field suggests that the magnetic fields play a significant role in structuring the interstellar medium in and around molecular clouds. However, we found no evident correlation between the star formation rates, estimated from the counts of young stellar objects, and the relative orientation between NH and B⊥ in these regions.


2018 ◽  
Vol 14 (S342) ◽  
pp. 244-245
Author(s):  
Sebastian Knuettel ◽  
Denise Gabuzda

AbstractBy constructing images of the Faraday rotation measure (RM) of large scale astrophysical jets, the line-of-sight magnetic field component and electron density in the region of Farady rotation can be investigated. A significant gradient in the RM transverse to the jet direction may indicate a corresponding gradient in the line-of-sight magnetic field, implying a toroidal or helical magnetic field, which would, in turn, imply the presence of an associated electrical current in the jet. The detection of such large scale gradients can reliably demonstrate that helical or toroidal fields can persist to large distances from the central AGN. We present a kiloparsec-scale Faraday rotation map of NGC 6251 that shows statistically significant transverse RM gradients across its kiloparsec scale jet structure that imply an outward current.


Sign in / Sign up

Export Citation Format

Share Document