The nature of multiple-nucleus cluster galaxies

1984 ◽  
Vol 280 ◽  
pp. L5 ◽  
Author(s):  
D. Merritt
2020 ◽  
Vol 500 (1) ◽  
pp. 310-318
Author(s):  
Roberto De Propris ◽  
Michael J West ◽  
Felipe Andrade-Santos ◽  
Cinthia Ragone-Figueroa ◽  
Elena Rasia ◽  
...  

ABSTRACT We explore the persistence of the alignment of brightest cluster galaxies (BCGs) with their local environment. We find that a significant fraction of BCGs do not coincide with the centroid of the X-ray gas distribution and/or show peculiar velocities (they are not at rest with respect to the cluster mean). Despite this, we find that BCGs are generally aligned with the cluster mass distribution even when they have significant offsets from the X-ray centre and significant peculiar velocities. The large offsets are not consistent with simple theoretical models. To account for these observations BCGs must undergo mergers preferentially along their major axis, the main infall direction. Such BCGs may be oscillating within the cluster potential after having been displaced by mergers or collisions, or the dark matter halo itself may not yet be relaxed.


2019 ◽  
Vol 15 (S359) ◽  
pp. 185-187
Author(s):  
Fiorella L. Polles

AbstractMulti-phase filamentary structures surrounding giant elliptical galaxies at the center of cool-core clusters, the Brightest Cluster Galaxies (BCGs), have been detected from optical to submillimeter wavelengths. The source of the ionisation in the filaments is still debated. Studying the excitation of these structures is key to our understanding of Active Galactic Nuclei (AGN) feedback in general, and more precisely of the impact of environmental and local effects on star formation. One possible contributor to the excitation of the filaments is the thermal radiation from the cooling of the hot plasma surrounding the BCGs, the so-called cooling flow.


Author(s):  
Shravan Shetty ◽  
Michele Cappellari ◽  
Richard M McDermid ◽  
Davor Krajnović ◽  
P T de Zeeuw ◽  
...  

Abstract We study a sample of 148 early-type galaxies in the Coma cluster using SDSS photometry and spectra, and calibrate our results using detailed dynamical models for a subset of these galaxies, to create a precise benchmark for dynamical scaling relations in high-density environments. For these galaxies, we successfully measured global galaxy properties, modeled stellar populations, and created dynamical models, and support the results using detailed dynamical models of 16 galaxies, including the two most massive cluster galaxies, using data taken with the SAURON IFU. By design, the study provides minimal scatter in derived scaling relations due to the small uncertainty in the relative distances of galaxies compared to the cluster distance. Our results demonstrate low (≤55% for 90th percentile) dark matter fractions in the inner 1Re of galaxies. Owing to the study design, we produce the tightest, to our knowledge, IMF-σe relation of galaxies, with a slope consistent with that seen in local galaxies. Leveraging our dynamical models, we transform the classical Fundamental Plane of the galaxies to the Mass Plane. We find that the coefficients of the mass plane are close to predictions from the virial theorem, and have significantly lower scatter compared to the Fundamental plane. We show that Coma galaxies occupy similar locations in the (M* - Re) and (M* - σe) relations as local field galaxies but are older. This, and the fact we find only three slow rotators in the cluster, is consistent with the scenario of hierarchical galaxy formation and expectations of the kinematic morphology-density relation.


2016 ◽  
Vol 465 (1) ◽  
pp. 192-212 ◽  
Author(s):  
Simon Zieleniewski ◽  
Ryan C. W. Houghton ◽  
Niranjan Thatte ◽  
Roger L. Davies ◽  
Sam P. Vaughan

2009 ◽  
Vol 5 (H15) ◽  
pp. 88-88
Author(s):  
Roberto P. Muñoz ◽  
L. F. Barrientos ◽  
B. P. Koester ◽  
D. G. Gilbank ◽  
M. D. Gladders ◽  
...  

AbstractWe use deep nIR imaging of 15 galaxy clusters at z ≃ 1 to study the build-up of the red-sequence in rich clusters since the Universe was half its present age. We measured, for the first time, the luminous-to-faint ratio of red-sequence galaxies at z=1 from a large ensemble of clusters, and found an increase of 100% in the ratio of luminous-to-faint red-sequence galaxies from z=0.45 to 1.0. The measured change in this ratio as function of redshift is well-reproduced by a simple evolutionary model developed in this work, that consists in an early truncation of the star formation for bright cluster galaxies and a delayed truncation for faint cluster galaxies.


2018 ◽  
Vol 478 (1) ◽  
pp. 541-547 ◽  
Author(s):  
S S Ali ◽  
M N Bremer ◽  
S Phillipps ◽  
R De Propris
Keyword(s):  

2021 ◽  
Vol 503 (3) ◽  
pp. 4309-4319
Author(s):  
Jong Chul Lee ◽  
Ho Seong Hwang ◽  
Hyunmi Song

ABSTRACT To study environmental effects on the circumgalactic medium (CGM), we use the samples of redMaPPer galaxy clusters, background quasars, and cluster galaxies from the Sloan Digital Sky Survey (SDSS). With ∼82 000 quasar spectra, we detect 197 Mg ii absorbers in and around the clusters. The detection rate per quasar is 2.7 ± 0.7 times higher inside the clusters than outside the clusters, indicating that Mg ii absorbers are relatively abundant in clusters. However, when considering the galaxy number density, the absorber-to-galaxy ratio is rather low inside the clusters. If we assume that Mg ii absorbers are mainly contributed by the CGM of massive star-forming galaxies, a typical halo size of cluster galaxies is smaller than that of field galaxies by 30 ± 10 per cent. This finding supports that galaxy haloes can be truncated by interaction with the host cluster.


2012 ◽  
Vol 8 (S295) ◽  
pp. 229-229
Author(s):  
S. Brough ◽  
K.-V. Tran ◽  
A. von der Linden

AbstractMassive Brightest Cluster Galaxies (BCGs) are observed to have a range of angular momenta, suggesting a variety of merging histories.


Sign in / Sign up

Export Citation Format

Share Document