uv upturn
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

2020 ◽  
Vol 500 (2) ◽  
pp. 1870-1883
Author(s):  
M L L Dantas ◽  
P R T Coelho ◽  
P Sánchez-Blázquez

ABSTRACT The ultraviolet (UV) upturn is characterized by an unexpected up-rise of the UV flux in quiescent galaxies between the Lyman limit and 2500 Å. By making use of colour–colour diagrams, one can subdivide UV bright red-sequence galaxies in two groups: UV weak and upturn. With these two groups, we propose a comparison between their stellar population properties with the goal of establishing differences and similarities between them. We make use of propensity score matching to mitigate potential biases between the two samples, by selecting similar objects in terms of redshift and stellar mass. Also, we take advantage of spectral energy distribution (SED) fitting results from magphys made available by the GAMA collaboration. The analyses are made by comparing the distributions from the SED fitting directly, as well as investigating the differences in correlations between their parameters, and finally by using principal component analysis. We explore important differences and similarities between UV weak and upturn galaxies in terms of several parameters, such as: metallicity, age, specific star formation rate, time of last burst of star-formation, to mention a few. Notable differences are those concerning (g − r) colour, metallicity, and time since last burst of star-formation: UV upturn are redder in the optical, more metallic, and their last burst of star-formation happened earlier in time. These differences suggest that UV upturn systems have shorter star-formation histories (i.e. have been evolving more passively) when compared to UV weak galaxies. Consequently, these last seem to have a higher diversity of stellar populations.


2020 ◽  
Vol 497 (3) ◽  
pp. 3251-3263
Author(s):  
A Werle ◽  
R Cid Fernandes ◽  
N Vale Asari ◽  
P R T Coelho ◽  
G Bruzual ◽  
...  

ABSTRACT Stellar population studies of early-type galaxies (ETGs) based on their optical stellar continuum suggest that these are quiescent systems. However, emission lines and ultraviolet photometry reveal a diverse population. We use a new version of the starlight spectral synthesis code and state-of-the-art stellar population models to simultaneously fit Sloan Digital Sky Survey spectra and Galaxy Evolution Explorer photometry for a sample of 3453 galaxies at z < 0.1 with near ultraviolet (NUV) − r > 5 that are classified as elliptical by Galaxy Zoo. We reproduce far ultraviolet (FUV) magnitudes for 80 per cent of UV upturn galaxies selected using criteria from the literature, suggesting that additional stellar population ingredients such as binaries and extreme horizontal branch stars may have a limited contribution to the UV upturn. The addition of ultraviolet data leads to a broadening of the distributions of mean stellar ages, metallicities, and attenuation. Stellar populations younger than $1\,$ Gyr are required to reproduce the ultraviolet emission in 17 per cent of our sample. These systems represent 43 per cent of the sample at 5 < NUV − r < 5.5 and span the same stellar mass range as other ETGs in our sample. ETGs with young stellar components have larger H α equivalent widths (WH α) and larger dust attenuation. Emission line ratios and WH α indicate that the ionizing source in these systems is a mixture of young and old stellar populations. Their young stellar populations are metal-poor, especially for high-mass galaxies, indicating recent star formation associated with rejuvenation events triggered by external processes, such as minor mergers.


2019 ◽  
Vol 492 (2) ◽  
pp. 2996-3011 ◽  
Author(s):  
M L L Dantas ◽  
P R T Coelho ◽  
R S de Souza ◽  
T S Gonçalves

ABSTRACT The so-called ultraviolet (UV) upturn of elliptical galaxies is a phenomenon characterized by the up-rise of their fluxes in bluer wavelengths, typically in the 1200–2500 Å range. This work aims at estimating the rate of occurrence of the UV upturn over the entire red-sequence population of galaxies that show significant UV emission. This assessment is made considering it as function of three parameters: redshift, stellar mass, and – what may seem counter-intuitive at first – emission-line classification. We built a multiwavelength spectrophotometric catalogue from the Galaxy Mass Assembly survey, together with aperture-matched data from Galaxy Evolution Explorer Medium-Depth Imaging Survey (MIS) and Sloan Digital Sky Survey, covering the redshift range between 0.06 and 0.40. From this sample, we analyse the UV emission among UV bright galaxies, by selecting those that occupy the red-sequence locus in the (NUV− r) × (FUV−NUV) chart; then, we stratify the sample by their emission-line classes. To that end, we make use of emission-line diagnostic diagrams, focusing the analysis in retired/passive lineless galaxies. Then, a Bayesian logistic model was built to simultaneously deal with the effects of all galaxy properties (including emission-line classification or lack thereof). The main results show that retired/passive systems host an up-rise in the fraction of UV upturn for redshifts between 0.06 and 0.25, followed by an in-fall up to 0.35. Additionally, we show that the fraction of UV upturn hosts rises with increasing stellar mass.


2019 ◽  
Vol 492 (2) ◽  
pp. 2128-2139
Author(s):  
S Phillipps ◽  
S S Ali ◽  
M N Bremer ◽  
R De Propris ◽  
A E Sansom ◽  
...  

ABSTRACT We use data from the GAMA and GALEX surveys to demonstrate that the UV upturn, an unexpected excess of ultraviolet flux from a hot stellar component, seen in the spectra of many early-type galaxies, arises from processes internal to individual galaxies with no measurable influence from the galaxies’ larger environment. We first define a clean sample of passive galaxies without a significant contribution to their UV flux from low-level star formation. We confirm that galaxies with the optical colours of red sequence galaxies often have signs of residual star formation, which, without other information, would prevent a convincing demonstration of the presence of UV upturns. However, by including (NUV−u) and WISE (W2–W3) colours, and FUV data where it exists, we can convincingly constrain samples to be composed of non-star-forming objects. Using such a sample, we examine GALEX photometry of low-redshift GAMA galaxies in a range of low-density environments, from groups to the general field, searching for UV upturns. We find a wide range of (NUV−r) colours, entirely consistent with the range seen – and attributed to the UV upturn – in low-redshift red sequence cluster galaxies. The range of colours is independent of group multiplicity or velocity dispersion, with isolated passive galaxies just as likely to have blue UV-to-optical colours, implying significant upturn components, as those in richer groups and in the previous data on clusters. This is supported by equivalent results for (FUV−r) colours which are clear indicators of upturn components.


2019 ◽  
Vol 492 (1) ◽  
pp. 326-351 ◽  
Author(s):  
I Lonoce ◽  
C Maraston ◽  
D Thomas ◽  
M Longhetti ◽  
T Parikh ◽  
...  

ABSTRACT We analyse publicly available, individual spectra of four massive ($M\gt 10^{11}\, \mathrm{M}_{\odot }$) early-type galaxies with redshifts in the range 1.4 ≤ z ≤ 2 to determine their stellar content, extending our previous work up to z ∼ 2. The wide wavelength range of the VLT/X-Shooter spectroscopic data in the UV–Optical–NIR arms along with the availability of spectro-photometry allows us to explore different techniques to obtain the stellar population properties, namely through age/metallicity-sensitive spectral indices, full spectral fitting, and broad-band photometric fitting. Moreover, together with the widely used optical Lick indices, we consider further indices in the UV rest frame, and demonstrate that UV indices significantly help the accuracy of the resulting population parameters. We find galaxy ages ranging from 0.2 to 4 Gyr, where the oldest galaxy is found at the lowest redshift, with an excellent agreement between ages determined via indices, full spectral fitting, or broad-band colours. These ages are in perfect agreement with ages of local galaxies at the same velocity dispersion when we assume pure passive evolution. Total metallicities derived from indices show some scatter (between less than half-solar to very high values, [Z/H] ∼ 0.6). We speculate on possible mechanisms explaining these values, but given the sample size and low S/N of the spectra no conclusion can be made. Indices in the UV rest frame generally lead to similar conclusions as optical indices. For the oldest galaxy (4 Gyr), we show that its UV indices can only be explained by stellar population models including a UV contribution from old stellar populations, suggesting that old, UV bright populations start to inhabit mature galaxies of a few Gyr of age. This is the highest redshift (z ∼ 1.4) detection of the UV upturn up to date.


2019 ◽  
Vol 15 (S341) ◽  
pp. 264-265
Author(s):  
R. De Propris ◽  
S. Ali ◽  
M. N. Bremer ◽  
S. Phillipps
Keyword(s):  

AbstractWe measure the evolution of the UV upturn color for galaxies on the red sequence in clusters at 0 < z < 0.7 and to luminosity levels L ∼ L*. We show that the UV upturn color does not change until at least z = 0.55 but becomes significantly redder at z = 0.7. This is the first detection of evolution in the UV upturn. Our observations are inconsistent with all models proposed for its origin except the presence of a population of helium enriched stars, with helium abundances above 42 % and formed at z > 4.


2019 ◽  
Vol 487 (3) ◽  
pp. 3021-3028 ◽  
Author(s):  
Sadman S Ali ◽  
Malcolm N Bremer ◽  
Steven Phillipps ◽  
Roberto De Propris

ABSTRACT We explore the dependence of ultraviolet (UV) upturn colours in early-type cluster galaxies on the properties of their parent clusters (such as velocity dispersion and X-ray luminosity) and on the positions and kinematics of galaxies within them. We use a sample of 24 nearby clusters with highly complete spectroscopy and optical/infrared data to select a suitable sample of red-sequence galaxies, whose far-ultraviolet and NUV magnitudes we measure from archival GALEX data. Our results show that the UV upturn colour has no dependence on cluster properties and has the same range in all clusters. There is also no dependence on the projected position within clusters or on line-of-sight velocity. Therefore, our conclusion is that the UV upturn phenomenon is an intrinsic feature of cluster early-type galaxies, irrespective of their cluster environment.


2019 ◽  
Vol 14 (S351) ◽  
pp. 112-116
Author(s):  
Paul Goudfrooij

AbstractI summarize the scenario by Goudfrooij (2018) in which the bulk of the ultraviolet (UV) upturn of giant early-type galaxies (ETGs) is due to helium-rich stellar populations that formed in massive metal-rich globular clusters (GCs) and subsequently dissolved in the strong tidal field in the central regions of the massive host galaxy. These massive GCs are assumed to show UV upturns similar to those observed recently in M87, the central galaxy in the Virgo cluster of galaxies. Data taken from the literature reveals a strong correlation between the strength of the UV upturn and the specific frequency of metal-rich GCs in ETGs. Adopting a Schechter function parametrization of GC mass functions, simulations of long-term dynamical evolution of GC systems show that this correlation can be explained by variations in the characteristic truncation mass Mc such that Mc increases with ETG luminosity in a way that is consistent with observed GC luminosity functions in ETGs. These findings suggest that the nature of the UV upturn in ETGs and the variation of its strength among ETGs are causally related to that of helium-rich populations in massive GCs, rather than intrinsic properties of field stars in ETGs.


2018 ◽  
Vol 480 (2) ◽  
pp. 2236-2246 ◽  
Author(s):  
S S Ali ◽  
M N Bremer ◽  
S Phillipps ◽  
R De Propris
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document