Trophic Structure, Effective Trophic Position, and Connectivity in Food Webs

1975 ◽  
Vol 109 (966) ◽  
pp. 191-206 ◽  
Author(s):  
J. R. Kercher ◽  
H. H. Shugart,
Ecology ◽  
2020 ◽  
Author(s):  
Gea H. Lee ◽  
J. Arie Vonk ◽  
Ralf C.M. Verdonschot ◽  
Michiel H.S. Kraak ◽  
Piet F.M. Verdonschot ◽  
...  

2018 ◽  
Vol 15 (9) ◽  
pp. 2629-2647 ◽  
Author(s):  
Yann Lelièvre ◽  
Jozée Sarrazin ◽  
Julien Marticorena ◽  
Gauthier Schaal ◽  
Thomas Day ◽  
...  

Abstract. Hydrothermal vent sites along the Juan de Fuca Ridge in the north-east Pacific host dense populations of Ridgeia piscesae tubeworms that promote habitat heterogeneity and local diversity. A detailed description of the biodiversity and community structure is needed to help understand the ecological processes that underlie the distribution and dynamics of deep-sea vent communities. Here, we assessed the composition, abundance, diversity and trophic structure of six tubeworm samples, corresponding to different successional stages, collected on the Grotto hydrothermal edifice (Main Endeavour Field, Juan de Fuca Ridge) at 2196 m depth. Including R. piscesae, a total of 36 macrofaunal taxa were identified to the species level. Although polychaetes made up the most diverse taxon, faunal densities were dominated by gastropods. Most tubeworm aggregations were numerically dominated by the gastropods Lepetodrilus fucensis and Depressigyra globulus and polychaete Amphisamytha carldarei. The highest diversities were found in tubeworm aggregations characterised by the longest tubes (18.5 ± 3.3 cm). The high biomass of grazers and high resource partitioning at a small scale illustrates the importance of the diversity of free-living microbial communities in the maintenance of food webs. Although symbiont-bearing invertebrates R. piscesae represented a large part of the total biomass, the low number of specialised predators on this potential food source suggests that its primary role lies in community structuring. Vent food webs did not appear to be organised through predator–prey relationships. For example, although trophic structure complexity increased with ecological successional stages, showing a higher number of predators in the last stages, the food web structure itself did not change across assemblages. We suggest that environmental gradients provided by the biogenic structure of tubeworm bushes generate a multitude of ecological niches and contribute to the partitioning of nutritional resources, releasing communities from competition pressure for resources and thus allowing species to coexist.


2009 ◽  
Vol 32 (5) ◽  
pp. 999-1010 ◽  
Author(s):  
Rachel Marie Wilson ◽  
Jeffrey Chanton ◽  
Graham Lewis ◽  
Douglas Nowacek

1996 ◽  
Vol 66 (4) ◽  
pp. 451-477 ◽  
Author(s):  
M. Jake Vander Zanden ◽  
Joseph B. Rasmussen

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Naoto F. Ishikawa ◽  
Yoshito Chikaraishi ◽  
Naohiko Ohkouchi ◽  
Aya R. Murakami ◽  
Ichiro Tayasu ◽  
...  

2021 ◽  
Author(s):  
◽  
Charlotte Mortimer

<p>Marine communities in the Anthropocene are changing rapidly with potentially severe consequences for ecosystem functioning. Recently, there has been increased interest in the ecological role of sponges, particularly on coral reefs, driven by evidence that sponges may be less affected by this period of environmental change than other benthic organisms. The Sampela reef system in the Wakatobi Marine National Park, Indonesia, is an example of a reef that has shifted to sponge dominance following a decline in hard corals and an increase in sponge density. Previous research suggests that the Sampela reef system may support a greater abundance of spongivorous fishes relative to surrounding reefs, however, uncertainties remain regarding spongivore identity and predated sponges. In addition, little is known about how shifts towards sponge dominance affect the trophic structure of reefs. The primary aim of my thesis was to investigate sponge trophic interactions to gain insight into the way sponge-dominated reefs of the future might function. This information is essential to predict the broader functional consequences of increasing sponge dominance on reefs in the Anthropocene.   In my first data chapter, I measured the functional impact of spongivorous fishes by quantifying sponge biomass consumption on Wakatobi reefs. Video analysis identified 33 species from 10 families of reef fish grazing on Xestospongia spp., although 95% of bites were taken by only 11 species. Gut content analysis indicated that Pygoplites diacanthus and Pomacanthus imperator were obligate spongivores and Pomacanthus xanthometopon, Zanclus cornutus and Siganus punctatus regularly consumed sponges. In situ feeding observations revealed that sponges from the family Petrosiidae are preferred by P. diacanthus and Z. cornutus. Spongivores were estimated to consume 46.6 ± 18.3 g sponge 1000 m- 2 of reef day-1 and P. diacanthus had the greatest predatory impact on sponges. While estimates provided here are conservative and likely underestimate the true magnitude of spongivory on Indo-Pacific coral reefs, this chapter provides the first known estimate of reef wide sponge biomass consumption. Comparisons with published data estimating coral consumption by Chaetodontids in the Pacific suggests that biomass transferred through both pathways is similar in magnitude. Hence spongivory is an important, yet overlooked, trophic pathway on Indo-Pacific reefs.  In my second data chapter, I developed genetic methods to identify sponges from the stomach contents of spongivorous angelfishes sampled in my first chapter. A range of primers and associated predator-blocking primers targeting the 18S rDNA gene were designed and tested on extracts of sponge and spongivore DNA. Sequences were successfully amplified from 14 sponges spanning 6 orders of Porifera, with the majority of samples identified belonging to the order Haplosclerida. This study is the first to successfully sequence sponges from the gut contents of spongivorous fishes. Sequence data indicated that Pygoplites diacanthus consumed sponges with considerable chemical defences and exhibited significant dietary plasticity within the Porifera phylum, similar to observations of angelfishes in the Caribbean and the eastern Pacific.  In my third data chapter, I used stable isotope analysis to investigate differences in consumer niche widths and trophic diversity on the sponge-dominated Sampela reef system in comparison to an adjacent, higher quality reef. I measured the stable isotope ratios of coral reef fish representing different functional feeding groups, prey items and basal carbon sources at both sites. I used isotope data to calculate the trophic position and isotopic niches of each species and performed interspecific and inter-site comparisons. The fish assemblage had a significantly lower mean trophic position at the sponge-dominated site and the majority of species had wider isotopic niches, in accordance with optimal foraging theory which supports expansion in niche widths when per capita prey is low. The fish assemblage sampled at the sponge-dominated site used a significantly lower range of resources, had lower trophic diversity and obtained more carbon from benthic production than fish from the higher quality reef site. Results indicate a simpler trophic structure at the sponge-dominated site characterised by fish with more similar diets. Whilst trophic niche expansion may facilitate population survival in the short term, it can be expected to lead to intensified competition for increasingly scarce resources.  In my final data chapter, I investigated niche partitioning and organic matter contributions to co-occurring temperate sponges. I sampled the stable isotope ratios of five abundant sponge species at 10 m and 30 m at two sites at opposing ends of Doubtful Sound, Fiordland. I also used an ROV to opportunistically sample sponges at depths >50 m and measured stable isotope ratios of picoplankton (</p>


2016 ◽  
Author(s):  
William Harrower ◽  
Lauchlan H Fraser ◽  
Roy Turkington

The addition or removal of predators from food webs by humans can have profound effects on the interactions between species. However, predators and primary producers are inextricably linked by the flow of energy through ecosystems. In temperate grasslands energy flow through ecosystems is often limited by water availability to plants. So, if the number and strength of interactions between species in grasslands depends on the amount of water available to plants, and we remove predators along a gradient in water availability, then we should see change in species interactions with predator removals along the gradient. After estimating trophic position and diet breadth of key predators, we excluded birds and small mammal predators from grasslands along a rainfall gradient in south central British Columbia for four years, and measured the response of plants and arthropods. Water availability significantly altered food web structure, and consequently the role of predators in structuring these ecosystems. When water was scarce, vertebrate predators impeded plant growth by feeding on spiders that would normally eat herbivorous insects. When water was more abundant, vertebrate predators facilitated plant growth by feeding on a broad range of arthropod prey. As water availability to plants increased they grew more. Herbivores were not able to consume all the new growth and thus dead plant material accumulated. Increasing detritus helped establish new links between predators and plants. Phenomena such as climate change can determine the availability of water entering ecosystems, which then alters trophic structure. If water availability can alter food webs there are no simple generalizations for community dynamics that are independent of climate.


2019 ◽  
Vol 194 (6) ◽  
pp. 823-839 ◽  
Author(s):  
Anton M. Potapov ◽  
Ulrich Brose ◽  
Stefan Scheu ◽  
Alexei V. Tiunov

Sign in / Sign up

Export Citation Format

Share Document