The Physics of Type Ia Supernova Light Curves. I. Analytic Results and Time Dependence

2000 ◽  
Vol 530 (2) ◽  
pp. 744-756 ◽  
Author(s):  
Philip A. Pinto ◽  
Ronald G. Eastman
2019 ◽  
Vol 486 (2) ◽  
pp. 2910-2918 ◽  
Author(s):  
Xilu Wang (王夕露) ◽  
Brian D Fields ◽  
Amy Yarleen Lien (連雅琳)

Abstract A Milky Way Type Ia supernova (SNIa) could be unidentified or even initially unnoticed, being dim in radio, X-rays, and neutrinos, and suffering large optical/IR extinction in the Galactic plane. But SNIa emit nuclear gamma-ray lines from 56Ni → 56Co → 56Fe radioactive decays. These lines fall within the Fermi/GBM energy range, and the 56Ni 158 keV line is detectable by Swift/BAT. Both instruments frequently monitor the Galactic plane, which is transparent to gamma rays. Thus GBM and BAT are ideal Galactic SNIa early warning systems. We simulate SNIa MeV light curves and spectra to show that GBM and BAT could confirm a Galactic SNIa explosion, followed by Swift localization and observation in X-rays and UVOIR band. The time of detection depends sensitively on the 56Ni distribution, and can be as early as a few days if ${\gtrsim } 10{{\ \rm per\ cent}}$ of the 56Ni is present in the surface as suggested by SN2014J gamma data.


Author(s):  
Syed A. Uddin ◽  
Jeremy Mould ◽  
Chris Lidman ◽  
Vanina Ruhlmann-Kleider ◽  
Delphine Hardin

AbstractWe compare two Type Ia supernova samples that are drawn from a spectroscopically confirmed Type Ia supernova sample: a host-selected sample in which SNe Ia are restricted to those that have a spectroscopic redshift from the host; and a broader, more traditional sample in which the redshift could come from either the SN or the host. The host-selected sample is representative of SN samples that will use the redshift of the host to infer the SN redshift, long after the SN has faded from view. We find that SNe Ia that are selected on the availability of a redshift from the host differ from SNe Ia that are from the broader sample. The former tend to be redder, have narrower light curves, live in more massive hosts, and tend to be at lower redshifts. We find that constraints on the equation of state of dark energy, w, and the matter density, ΩM, remain consistent between these two types of samples. Our results are important for ongoing and future supernova surveys, which unlike previous supernova surveys, will have limited real-time follow-up to spectroscopically classify the SNe they discover. Most of the redshifts in these surveys will come from the hosts.


2018 ◽  
Vol 859 (1) ◽  
pp. 24 ◽  
Author(s):  
Carlos Contreras ◽  
M. M. Phillips ◽  
Christopher R. Burns ◽  
Anthony L. Piro ◽  
B. J. Shappee ◽  
...  

2010 ◽  
Vol 710 (1) ◽  
pp. 444-455 ◽  
Author(s):  
P. Höflich ◽  
K. Krisciunas ◽  
A. M. Khokhlov ◽  
E. Baron ◽  
G. Folatelli ◽  
...  

2000 ◽  
Vol 530 (2) ◽  
pp. 757-776 ◽  
Author(s):  
Philip A. Pinto ◽  
Ronald G. Eastman

2022 ◽  
Vol 924 (1) ◽  
pp. 35
Author(s):  
Liping Li ◽  
Jujia Zhang ◽  
Benzhong Dai ◽  
Wenxiong Li ◽  
Xiaofeng Wang ◽  
...  

Abstract We present optical and ultraviolet (UV) observations of a luminous type Ia supernova (SN Ia) SN 2015bq characterized by early flux excess. This SN reaches a B-band absolute magnitude at M B = −19.68 ± 0.41 mag and a peak bolometric luminosity at L = (1.75 ± 0.37) × 1043 erg s−1, with a relatively small post-maximum decline rate [Δm 15(B) = 0.82 ± 0.05 mag]. The flux excess observed in the light curves of SN 2015bq a few days after the explosion, especially seen in the UV bands, might be due to the radioactive decay of 56Ni mixed into the surface. The radiation from the decay of the surface 56Ni heats the outer layer of this SN. It produces blue U − B color followed by monotonically reddening in the early phase, dominated iron-group lines, and weak intermediate-mass element absorption features in the early spectra. The scenario of enhanced 56Ni in the surface is consistent with a large amount of 56Ni ( M 56 Ni = 0.97 ± 0.20 M ☉) synthesized during the explosion. The properties of SN 2015bq are found to locate between SN 1991T and SN 1999aa, suggesting the latter two subclasses of SNe Ia may have a common origin.


Sign in / Sign up

Export Citation Format

Share Document