Three-dimensional Magnetohydrodynamic Simulations of Relativistic Jets Injected along a Magnetic Field

1997 ◽  
Vol 483 (1) ◽  
pp. L45-L48 ◽  
Author(s):  
Ken-Ichi Nishikawa ◽  
Shinji Koide ◽  
Jun-ichi Sakai ◽  
Dimitris M. Christodoulou ◽  
Hélène Sol ◽  
...  
2021 ◽  
Vol 503 (4) ◽  
pp. 4918-4929
Author(s):  
Jin Matsumoto ◽  
Serguei S Komissarov ◽  
Konstantinos N Gourgouliatos

ABSTRACT In this paper, we describe the results of three-dimensional relativistic magnetohydrodynamic simulations aimed at probing the role of regular magnetic field on the development of the instability that accompanies recollimation of relativistic jets. In particular, we studied the recollimation driven by the reconfinement of jets from active galactic nuclei (AGN) by the thermal pressure of galactic coronas. We find that a relatively weak azimuthal magnetic field can completely suppress the recollimation instability in such jets, with the critical magnetization parameter σcr < 0.01. We argue that the recollimation instability is a variant of the centrifugal instability (CFI) and show that our results are consistent with the predictions based on the study of magnetic CFI in rotating fluids. The results are discussed in the context of AGN jets in general and the nature of the Fanaroff–Riley morphological division of extragalactic radio sources in particular.


1998 ◽  
Vol 498 (1) ◽  
pp. 166-169 ◽  
Author(s):  
Ken‐Ichi Nishikawa ◽  
Shinji Koide ◽  
Jun‐ichi Sakai ◽  
Dimitris M. Christodoulou ◽  
Helene Sol ◽  
...  

2018 ◽  
Vol 618 ◽  
pp. A87 ◽  
Author(s):  
E. Khomenko ◽  
N. Vitas ◽  
M. Collados ◽  
A. de Vicente

In recent decades, REALISTIC three-dimensional radiative-magnetohydrodynamic simulations have become the dominant theoretical tool for understanding the complex interactions between the plasma and magnetic field on the Sun. Most of such simulations are based on approximations of magnetohydrodynamics, without directly considering the consequences of the very low degree of ionization of the solar plasma in the photosphere and bottom chromosphere. The presence of a large amount of neutrals leads to a partial decoupling of the plasma and magnetic field. As a consequence, a series of non-ideal effects, i.e., the ambipolar diffusion, Hall effect, and battery effect, arise. The ambipolar effect is the dominant in the solar chromosphere. We report on the first three-dimensional realistic simulations of magneto-convection including ambipolar diffusion and battery effects. The simulations are carried out using the newly developed MANCHA3Dcode. Our results reveal that ambipolar diffusion causes measurable effects on the amplitudes of waves excited by convection in the simulations, on the absorption of Poynting flux and heating, and on the formation of chromospheric structures. We provide a low limit on the chromospheric temperature increase owing to the ambipolar effect using the simulations with battery-excited dynamo fields.


2019 ◽  
Vol 492 (1) ◽  
pp. 668-685 ◽  
Author(s):  
James R Beattie ◽  
Christoph Federrath

ABSTRACT Stars form in highly magnetized, supersonic turbulent molecular clouds. Many of the tools and models that we use to carry out star formation studies rely upon the assumption of cloud isotropy. However, structures like high-density filaments in the presence of magnetic fields and magnetosonic striations introduce anisotropies into the cloud. In this study, we use the two-dimensional power spectrum to perform a systematic analysis of the anisotropies in the column density for a range of Alfvén Mach numbers ($\operatorname{\mathcal {M}_{\text{A}}}=0.1{\!-\!10}$) and turbulent Mach numbers ($\operatorname{\mathcal {M}}=2{\!-\!20}$), with 20 high-resolution, three-dimensional turbulent magnetohydrodynamic simulations. We find that for cases with a strong magnetic guide field, corresponding to $\operatorname{\mathcal {M}_{\text{A}}}\lt 1$, and $\operatorname{\mathcal {M}}\lesssim 4$, the anisotropy in the column density is dominated by thin striations aligned with the magnetic field, while for $\operatorname{\mathcal {M}}\gtrsim 4$ the anisotropy is significantly changed by high-density filaments that form perpendicular to the magnetic guide field. Indeed, the strength of the magnetic field controls the degree of anisotropy and whether or not any anisotropy is present, but it is the turbulent motions controlled by $\operatorname{\mathcal {M}}$ that determine which kind of anisotropy dominates the morphology of a cloud.


Author(s):  
Grzegorz Kowal ◽  
Diego A. Falceta-Gonçalves

In addition to gamma-ray binaries which contain a compact object, high-energy and very high–energy gamma rays have also been detected from colliding-wind binaries. The collision of the winds produces two strong shock fronts, one for each wind, both surrounding a shock region of compressed and heated plasma, where particles are accelerated to very high energies. Magnetic field is also amplified in the shocked region on which the acceleration of particles greatly depends. In this work, we performed full three-dimensional magnetohydrodynamic simulations of colliding winds coupled to a code that evolves the kinematics of passive charged test particles subject to the plasma fluctuations. After the run of a large ensemble of test particles with initial thermal distributions, we show that such shocks produce a nonthermal population (nearly 1% of total particles) of few tens of GeVs up to few TeVs, depending on the initial magnetization level of the stellar winds. We were able to determine the loci of fastest acceleration, in the range of MeV/s to GeV/s, to be related to the turbulent plasma with amplified magnetic field of the shock. These results show that colliding-wind binaries are indeed able to produce a significant population of high-energy particles, in relatively short timescales, compared to the dynamical and diffusion timescales.


2014 ◽  
Vol 28 ◽  
pp. 1460201 ◽  
Author(s):  
YOSUKE MIZUNO ◽  
KEN-ICHI NISHIKAWA ◽  
YURI LYUBARSKY ◽  
PHILIP E. HARDEE

We have investigated the influence of jet rotation and differential motion on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria via three-dimensional relativistic magnetohydrodynamic simulations. In this study, we follow the temporal development within a periodic computational box. Displacement of the initial helical magnetic field leads to the growth of the CD kink instability. In the rotating relativistic jet case, developing helical kink structure propagates along jet as it grows in amplitude. The growth rate of the CD kink instability does not depend on the jet rotation. The coupling of multiple unstable wavelengths is crucial to determining whether the jet is eventually disrupted in the nonlinear stage. The CD kink instability deformed magnetic field may trigger magnetic reconnection in the jet.


Sign in / Sign up

Export Citation Format

Share Document