scholarly journals The First Resolved and Detected Classical Nova Shell in X-Rays: The Shell of Nova Persei 1901

1999 ◽  
Vol 518 (2) ◽  
pp. L111-L114 ◽  
Author(s):  
Şölen Balman ◽  
Hakki B. Ögelman
Keyword(s):  
X Rays ◽  
1982 ◽  
Vol 69 ◽  
pp. 475-481
Author(s):  
M.F. Bode ◽  
A. Evans ◽  
A. Bruch

AbstractRecent observations of an apparent soft X-ray halo around the dwarf nova SU UHa have led to speculation that this may well be evidence of the object having undergone a classical nova-like outburst within historical times (Cordova and Mason 1980). By combining the relationship between quiescent X-ray luminosity and speed class for classical novae and the observed X-ray luminosity of SU UMa we derive a distance dependent apparent magnitude at outburst for the object. Distance estimates for SU UMa and absolute magnitude ranges for classical novae then determine the apparent magnitude of an outburst more exactly. From the angular size of the halo and the absolute magnitude - ejection velocity relationship for classical novae we derive the approximate date of any outburst. Comparison with historical records does not reveal any promising candidates. An alternative interpretation of the halo in terms of scattering of soft X-rays from dwarf nova outbursts by interstellar grains is suggested.


2021 ◽  
Vol 922 (2) ◽  
pp. L42
Author(s):  
Jeremy J. Drake ◽  
Jan-Uwe Ness ◽  
Kim L. Page ◽  
G. J. M. Luna ◽  
Andrew P. Beardmore ◽  
...  

Abstract Nova Her 2021 (V1674 Her), which erupted on 2021 June 12, reached naked-eye brightness and has been detected from radio to γ-rays. An extremely fast optical decline of 2 magnitudes in 1.2 days and strong Ne lines imply a high-mass white dwarf. The optical pre-outburst detection of a 501.42 s oscillation suggests a magnetic white dwarf. This is the first time that an oscillation of this magnitude has been detected in a classical nova prior to outburst. We report X-ray outburst observations from Swift and Chandra that uniquely show (1) a very strong modulation of supersoft X-rays at a different period from reported optical periods, (2) strong pulse profile variations and the possible presence of period variations of the order of 0.1–0.3 s, and (3) rich grating spectra that vary with modulation phase and show P Cygni–type emission lines with two dominant blueshifted absorption components at ∼3000 and 9000 km s−1 indicating expansion velocities up to 11,000 km s−1. X-ray oscillations most likely arise from inhomogeneous photospheric emission related to the magnetic field. Period differences between reported pre- and post-outburst optical observations, if not due to other period drift mechanisms, suggest a large ejected mass for such a fast nova, in the range 2 × 10−5–2 × 10−4 M ⊙. A difference between the period found in the Chandra data and a reported contemporaneous post-outburst optical period, as well as the presence of period drifts, could be due to weakly nonrigid photospheric rotation.


2012 ◽  
Vol 758 (2) ◽  
pp. 121 ◽  
Author(s):  
Michael M. Shara ◽  
Trisha Mizusawa ◽  
Peter Wehinger ◽  
David Zurek ◽  
Christopher D. Martin ◽  
...  
Keyword(s):  

2013 ◽  
Vol 549 ◽  
pp. A120 ◽  
Author(s):  
M. Henze ◽  
W. Pietsch ◽  
F. Haberl ◽  
M. Della Valle ◽  
A. Riffeser ◽  
...  
Keyword(s):  
X Rays ◽  

2018 ◽  
Vol 857 (2) ◽  
pp. 80 ◽  
Author(s):  
Martín A. Guerrero ◽  
Laurence Sabin ◽  
Gagik Tovmassian ◽  
Edgar Santamaría ◽  
Raul Michel ◽  
...  

1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


Author(s):  
R. F. Bils ◽  
W. F. Diller ◽  
F. Huth

Phosgene still plays an important role as a toxic substance in the chemical industry. Thiess (1968) recently reported observations on numerous cases of phosgene poisoning. A serious difficulty in the clinical handling of phosgene poisoning cases is a relatively long latent period, up to 12 hours, with no obvious signs of severity. At about 12 hours heavy lung edema appears suddenly, however changes can be seen in routine X-rays taken after only a few hours' exposure (Diller et al., 1969). This study was undertaken to correlate these early changes seen by the roengenologist with morphological alterations in the lungs seen in the'light and electron microscopes.Forty-two adult male and female Beagle dogs were selected for these exposure experiments. Treated animals were exposed to 94.5-107-5 ppm phosgene for 10 min. in a 15 m3 chamber. Roentgenograms were made of the thorax of each animal before and after exposure, up to 24 hrs.


Sign in / Sign up

Export Citation Format

Share Document