scholarly journals The Impact of Human Immunodeficiency Virus Type 1 Status on Human Papillomavirus (HPV) Prevalence and HPV Antibodies in Serum and Cervical Secretions

2000 ◽  
Vol 182 (4) ◽  
pp. 1239-1242 ◽  
Author(s):  
Dianne J. Marais ◽  
Eftyhia Vardas ◽  
Gita Ramjee ◽  
Bruce Allan ◽  
Patti Kay ◽  
...  
2009 ◽  
Vol 83 (22) ◽  
pp. 11440-11446 ◽  
Author(s):  
Signe Fransen ◽  
Soumi Gupta ◽  
Robert Danovich ◽  
Daria Hazuda ◽  
Michael Miller ◽  
...  

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) integrase mutations N155H and Q148R(H)(K) that reduce susceptibility to the integrase inhibitor raltegravir have been identified in patients failing treatment regimens containing raltegravir. Whether these resistance mutations occur individually or in combination within a single virus genome has not been defined, nor do we fully understand the impact of these primary mutations and other secondary mutations on raltegravir susceptibility and viral replication capacity. To address these important questions, we investigated the raltegravir susceptibility and replication capacity of viruses containing mutations at positions 155 and 148 separately or in combination with secondary mutations selected in subjects failing treatment regimens containing raltegravir. Clonal analysis demonstrated that N155H and Q148R(H)(K) occur independently, not in combination. Viruses containing a Q148R(H)(K) mutation generally displayed larger reductions in raltegravir susceptibility than viruses with an N155H mutation. Analysis of site-directed mutants indicated that E92Q in combination with N155H resulted in a higher level of resistance to raltegravir than N155H alone. Viruses containing a Q148R(H) mutation together with a G140S mutation were more resistant to raltegravir than viruses containing a Q148R(H) mutation alone; however, viruses containing G140S and Q148K were more susceptible to raltegravir than viruses containing a Q148K mutation alone. Both N155H and Q148R(H)(K) mutations reduced the replication capacity, while the addition of secondary mutations either improved or reduced the replication capacity depending on the primary mutation. This study demonstrates distinct genetic pathways to resistance in subjects failing raltegravir regimens and defines the effects of primary and secondary resistance mutations on raltegravir susceptibility and replication capacity.


2012 ◽  
Vol 93 (12) ◽  
pp. 2625-2634 ◽  
Author(s):  
Elena Capel ◽  
Glòria Martrus ◽  
Mariona Parera ◽  
Bonaventura Clotet ◽  
Miguel Angel Martínez

The rapid spread of human immunodeficiency virus type 1 (HIV-1) in humans has been accompanied by continuous extensive genetic diversification of the virus. The aim of this study was to investigate the impact of HIV-1 diversification on HIV-1 replication capacity (RC) and mutational robustness. Thirty-three HIV-1 protease sequences were amplified from three groups of viruses: two naïve sample groups isolated 15 years apart plus a third group of protease inhibitor-(PI) resistant samples. The amplified proteases were recombined with an HXB2 infectious clone and RC was determined in MT-4 cells. RC was also measured in these three groups after random mutagenesis in vitro using error-prone PCR. No significant RC differences were observed between recombinant viruses from either early or recent naïve isolates (P = 0.5729), even though the proteases from the recent isolates had significantly lower sequence conservation scores compared with a subtype B ancestral sequence (P<0.0001). Randomly mutated recombinant viruses from the three groups exhibited significantly lower RC values than the corresponding wild-type viruses (P<0.0001). There was no significant difference regarding viral infectivity reduction between viruses carrying randomly mutated naïve proteases from early or recent sample isolates (P = 0.8035). Interestingly, a significantly greater loss of RC was observed in the PI-resistant protease group (P = 0.0400). These results demonstrate that protease sequence diversification has not affected HIV-1 RC or protease robustness and indicate that proteases carrying PI resistance substitutions are less robust than naïve proteases.


2007 ◽  
Vol 82 (5) ◽  
pp. 2405-2417 ◽  
Author(s):  
Vineela Chukkapalli ◽  
Ian B. Hogue ◽  
Vitaly Boyko ◽  
Wei-Shau Hu ◽  
Akira Ono

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) particle assembly mediated by the viral structural protein Gag occurs predominantly on the plasma membrane (PM). Although it is known that the matrix (MA) domain of Gag plays a major role in PM localization, molecular mechanisms that determine the location of assembly remain to be elucidated. We observed previously that overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV) that depletes PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] impairs virus particle production and redirects processed Gag to intracellular compartments. In this study, we examined the impact of PI(4,5)P2 depletion on the subcellular localization of the entire Gag population using Gag-fluorescent protein chimeras. Upon 5ptaseIV overexpression, in addition to perinuclear localization, Gag also showed a hazy cytosolic signal, suggesting that PI(4,5)P2 depletion impairs Gag membrane binding. Indeed, Gag was less membrane bound in PI(4,5)P2-depleted cells, as assessed by biochemical analysis. These observations are consistent with the hypothesis that Gag interacts with PI(4,5)P2. To examine a putative Gag interaction with PI(4,5)P2, we developed an in vitro binding assay using full-length myristoylated Gag and liposome-associated PI(4,5)P2. Using this assay, we observed that PI(4,5)P2 significantly enhances liposome binding of wild-type Gag. In contrast, a Gag derivative lacking MA did not require PI(4,5)P2 for efficient liposome binding. To analyze the involvement of MA in PI(4,5)P2 binding further, we examined MA basic amino acid substitution mutants. These mutants, previously shown to localize in perinuclear compartments, bound PI(4,5)P2-containing liposomes weakly. Altogether, these results indicate that HIV-1 Gag binds PI(4,5)P2 on the membrane and that the MA basic domain mediates this interaction.


1992 ◽  
Vol 12 (12) ◽  
pp. 5555-5562 ◽  
Author(s):  
J D DeZazzo ◽  
J M Scott ◽  
M J Imperiale

At least two mechanisms have been implicated in regulating poly(A) site use in human immunodeficiency virus type 1 (HIV-1): inhibition of basal signals within 500 nucleotides (nt) of the cap site, leading to specific suppression of the 5' poly(A) site, and stimulation of basal signals by long terminal repeat U3 sequences, leading to specific activation of the 3' poly(A) site. We determined the relative contributions of these mechanisms in a HeLa cell transcription/processing reaction and by transient transfection analysis. In vitro, the efficiency of basal signals is equivalent close to (270 nt) and far from (1,080 nt) the promoter and is stimulated at least 30-fold in both positions by upstream U3 sequences. In vivo, U3 sequences also enhance processing at both positions. There are two additional effects when the poly(A) site is close to the cap site: at least a 15-fold reduction in total RNA levels and a 5-fold decrease in relative levels of RNA processed at the HIV-1 site in constructs containing U3. Both effects are overcome by insertion of upstream splicing signals in an orientation-dependent manner. Splicing appears to influence poly(A)+ RNA levels by two distinct mechanisms: stabilizing nuclear transcripts and directly stimulating 3' end formation. It is proposed that upstream elements play major roles in regulating poly(A) site choice and in controlling the subsequent fate of polyadenylated RNA. The impact of these findings on mechanisms of mRNA biogenesis in the HIV-1 provirus is discussed.


1996 ◽  
Vol 40 (7) ◽  
pp. 1711-1714 ◽  
Author(s):  
Y Kew ◽  
H Salomon ◽  
L R Olsen ◽  
M A Wainberg ◽  
V R Prasad

The alteration of a glutamic acid (E) to a glycine (G) amino acid residue at position 89 (E89G alteration) in the human immunodeficiency virus type 1 reverse transcriptase confers decreased susceptibility to several nucleoside analog inhibitors. Because the nonnucleoside inhibitor-binding pocket is adjacent to the deoxynucleoside triphosphate substrate-binding site, the impact of the E89G reverse transcriptase has decreased susceptibility to TIBO R82150, nevirapine, and to a lesser extent, delavirdine. Human immunodeficiency viruses bearing the same mutation displayed decreased susceptibility to inhibition by these compounds in a cell culture virus replication assay.


Sign in / Sign up

Export Citation Format

Share Document